Home
Class 12
MATHS
intsqrt(1+cos 2x) dx...

`intsqrt(1+cos 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{1 + \cos 2x} \, dx\), we can follow these steps: ### Step 1: Use the double angle identity for cosine We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can rewrite \(1 + \cos 2x\) as: \[ 1 + \cos 2x = 1 + (2 \cos^2 x - 1) = 2 \cos^2 x \] ### Step 2: Substitute into the integral Now we substitute this back into the integral: \[ \int \sqrt{1 + \cos 2x} \, dx = \int \sqrt{2 \cos^2 x} \, dx \] ### Step 3: Simplify the square root The square root can be simplified: \[ \sqrt{2 \cos^2 x} = \sqrt{2} \cdot |\cos x| \] Thus, the integral becomes: \[ \int \sqrt{2} \cdot |\cos x| \, dx \] ### Step 4: Handle the absolute value The absolute value \(|\cos x|\) can be split into two cases based on the sign of \(\cos x\): 1. When \(\cos x \geq 0\) (i.e., \(x\) in intervals where cosine is non-negative), we have \(|\cos x| = \cos x\). 2. When \(\cos x < 0\), we have \(|\cos x| = -\cos x\). ### Step 5: Integrate based on cases 1. **Case 1**: If \(\cos x \geq 0\): \[ \int \sqrt{2} \cos x \, dx = \sqrt{2} \sin x + C \] 2. **Case 2**: If \(\cos x < 0\): \[ \int \sqrt{2} (-\cos x) \, dx = -\sqrt{2} \sin x + C \] ### Final Result Thus, the final result of the integral \(\int \sqrt{1 + \cos 2x} \, dx\) is: \[ \int \sqrt{1 + \cos 2x} \, dx = \begin{cases} \sqrt{2} \sin x + C & \text{if } \cos x \geq 0 \\ -\sqrt{2} \sin x + C & \text{if } \cos x < 0 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+sin 2x) dx

Evaluate: int(3\ s in\ x-2cosx+4s e c^2x-5cos e c^2x)\ dx (ii) intsqrt(1+cos2x)\ dx

Evaluate : intsqrt((1+cos2x)/2)dx intsqrt((1-cos2x)/2)dx

Evaluate: intsqrt(cos e cx-1) dx

Evaluate: (i) sqrt(1-cos2x)\ dx (ii) intsqrt(1+sin2x)\ dx

Evaluate: intsqrt(1-sin2x)\ dx

Evaluate: intsqrt(cosec^2x-2)dx

Evaluate: (i) intsqrt((1+cos2x)/2)\ dx (ii) intsqrt((1-cos2x)/2)\ dx

intsqrt(1+sinx)dx

intsqrt(1+sinx)dx