Home
Class 12
MATHS
int(2-3 cos x)/(sin^(2) x)dx...

`int(2-3 cos x)/(sin^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{2 - 3 \cos x}{\sin^2 x} \, dx\), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Split the Integral We can rewrite the integral as: \[ \int \frac{2}{\sin^2 x} \, dx - \int \frac{3 \cos x}{\sin^2 x} \, dx \] ### Step 2: Rewrite the Terms Using the identity \(\frac{1}{\sin^2 x} = \csc^2 x\) and \(\frac{\cos x}{\sin^2 x} = \cot x \csc x\), we can express the integrals as: \[ \int 2 \csc^2 x \, dx - 3 \int \cot x \csc x \, dx \] ### Step 3: Integrate the First Term The integral of \(\csc^2 x\) is: \[ \int \csc^2 x \, dx = -\cot x \] Thus, \[ \int 2 \csc^2 x \, dx = 2(-\cot x) = -2 \cot x \] ### Step 4: Integrate the Second Term The integral of \(\cot x \csc x\) is: \[ \int \cot x \csc x \, dx = -\csc x \] Thus, \[ -3 \int \cot x \csc x \, dx = -3(-\csc x) = 3 \csc x \] ### Step 5: Combine the Results Now, we can combine the results from both integrals: \[ -2 \cot x + 3 \csc x + C \] where \(C\) is the constant of integration. ### Final Answer The final result of the integral is: \[ \int \frac{2 - 3 \cos x}{\sin^2 x} \, dx = 3 \csc x - 2 \cot x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (2-3 sin x)/(cos^(2) x) dx

Find int(3+3 cos x)/(x+sin x)dx .

int (3-4 sin x)/(cos^(2) x) dx=?

int(sin 2x)/(5-cos^(2) x)dx

Evaluate: int(cos2x)/(2+sin2x)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate : (i) int (cos2x+2sin^2x)/(sin^2x)dx (ii) int(2cos^2x-cos2x)/(cos^2x)dx

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to