Home
Class 12
MATHS
int(1+cos 2x)/(1-cos 2x)dx...

`int(1+cos 2x)/(1-cos 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 + \cos 2x}{1 - \cos 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral using trigonometric identities We know that \( \cos 2x = 1 - 2\sin^2 x \). Therefore, we can express \( \cos 2x \) in terms of \( \tan^2 x \): \[ \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} \] Using this, we can rewrite the integral: \[ I = \int \frac{1 + \cos 2x}{1 - \cos 2x} \, dx = \int \frac{1 + \frac{1 - \tan^2 x}{1 + \tan^2 x}}{1 - \frac{1 - \tan^2 x}{1 + \tan^2 x}} \, dx \] ### Step 2: Simplify the expression Now, let's simplify the numerator and denominator: - **Numerator**: \[ 1 + \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{(1 + \tan^2 x) + (1 - \tan^2 x)}{1 + \tan^2 x} = \frac{2}{1 + \tan^2 x} \] - **Denominator**: \[ 1 - \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{(1 + \tan^2 x) - (1 - \tan^2 x)}{1 + \tan^2 x} = \frac{2\tan^2 x}{1 + \tan^2 x} \] Thus, we can rewrite the integral as: \[ I = \int \frac{\frac{2}{1 + \tan^2 x}}{\frac{2\tan^2 x}{1 + \tan^2 x}} \, dx = \int \frac{1}{\tan^2 x} \, dx \] ### Step 3: Rewrite in terms of cotangent Since \( \frac{1}{\tan^2 x} = \cot^2 x \), we have: \[ I = \int \cot^2 x \, dx \] ### Step 4: Integrate using the identity We know that: \[ \cot^2 x = \csc^2 x - 1 \] Thus, we can split the integral: \[ I = \int (\csc^2 x - 1) \, dx = \int \csc^2 x \, dx - \int 1 \, dx \] ### Step 5: Compute the integrals The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] And the integral of \( 1 \) is: \[ \int 1 \, dx = x \] ### Step 6: Combine the results Putting it all together: \[ I = -\cot x - x + C \] ### Final Answer Thus, the final answer is: \[ I = -\cot x - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx

Evaluate: (i) int(tanx+cotx)^2\ dx (ii) int(1-cos2x)/(1+cos2x)\ dx

int (1-cos x)/(1+cos x) dx=?

Evaluate: int(cosx)/(1/4-cos^2x)\ dx

Integrate the following: int{(5cos^3x+2sin^3 x)/(2sin^2 x*cos^2 x)+sqrt(1+sin2x)+(1+2sin x)/(cos^2x)+(1-cos2x)/(1+cos 2x)}dx

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

Evaluate: int(cos e c^2x)/(1+cotx)dx

I=int(sin^2x)/(1+cos x)dx

int(2+sin2x)/(1+cos2 x)dx

int(1)/(1-cos 2x) dx