Home
Class 12
MATHS
(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x...

`(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): We need to evaluate the integral: \[ \int \frac{\cos^3 x + \sin^3 x}{\sin^2 x \cos^2 x} \, dx \] **Step 1: Simplify the integrand** Using the identity for the sum of cubes, we can rewrite \(\cos^3 x + \sin^3 x\) as: \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(\cos^2 x - \cos x \sin x + \sin^2 x) \] Since \(\cos^2 x + \sin^2 x = 1\), we have: \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(1 - \cos x \sin x) \] Thus, the integral becomes: \[ \int \frac{(\cos x + \sin x)(1 - \cos x \sin x)}{\sin^2 x \cos^2 x} \, dx \] **Step 2: Split the integral** We can split the integral into two parts: \[ \int \frac{\cos x + \sin x}{\sin^2 x \cos^2 x} \, dx - \int \frac{(\cos x + \sin x) \cos x \sin x}{\sin^2 x \cos^2 x} \, dx \] This simplifies to: \[ \int \frac{\cos x}{\sin^2 x \cos^2 x} \, dx + \int \frac{\sin x}{\sin^2 x \cos^2 x} \, dx \] **Step 3: Rewrite the integrals** The first integral can be rewritten as: \[ \int \frac{1}{\sin^2 x} \cdot \frac{1}{\cos x} \, dx = \int \cot x \csc x \, dx \] The second integral can be rewritten as: \[ \int \frac{1}{\cos^2 x} \cdot \frac{1}{\sin x} \, dx = \int \tan x \sec x \, dx \] **Step 4: Evaluate the integrals** The integral \(\int \cot x \csc x \, dx\) evaluates to \(-\csc x\), and the integral \(\int \tan x \sec x \, dx\) evaluates to \(\sec x\). Thus, we have: \[ -\csc x + \sec x + C \] ### Final Answer for Part (i): \[ \int \frac{\cos^3 x + \sin^3 x}{\sin^2 x \cos^2 x} \, dx = \sec x - \csc x + C \] --- ### Part (ii): Now we will evaluate the integral: \[ \int \frac{\cos 2x}{\cos^2 x \sin^2 x} \, dx \] **Step 1: Use the double angle identity** We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can rewrite the integral as: \[ \int \frac{2 \cos^2 x - 1}{\cos^2 x \sin^2 x} \, dx \] **Step 2: Split the integral** This can be split into two separate integrals: \[ \int \frac{2 \cos^2 x}{\cos^2 x \sin^2 x} \, dx - \int \frac{1}{\cos^2 x \sin^2 x} \, dx \] This simplifies to: \[ 2 \int \frac{1}{\sin^2 x} \, dx - \int \frac{1}{\cos^2 x} \, dx \] **Step 3: Rewrite the integrals** The first integral can be rewritten as: \[ 2 \int \csc^2 x \, dx \] The second integral can be rewritten as: \[ \int \sec^2 x \, dx \] **Step 4: Evaluate the integrals** The integral \(\int \csc^2 x \, dx\) evaluates to \(-\cot x\), and the integral \(\int \sec^2 x \, dx\) evaluates to \(\tan x\). Thus, we have: \[ 2(-\cot x) - \tan x + C = -2 \cot x - \tan x + C \] ### Final Answer for Part (ii): \[ \int \frac{\cos 2x}{\cos^2 x \sin^2 x} \, dx = -2 \cot x - \tan x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(cos^(2) x-3 sin^(2) x)dx

3. int(dx)/(sin^(2)x+cos^(2)x)

int(sin2x)/(cos2x)dx

int cos^(3) x. sin x dx

int(1+sin2x)/(cos^2x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(sin2x)/(cos x)*dx

int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equals

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int(sin 2x)/(5-cos^(2) x)dx