Home
Class 12
MATHS
int((x+1)(2x-3))/(x) dx...

`int((x+1)(2x-3))/(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(x+1)(2x-3)}{x} \, dx\), we can follow these steps: ### Step 1: Expand the numerator First, we need to expand the expression \((x+1)(2x-3)\): \[ (x+1)(2x-3) = x \cdot 2x + x \cdot (-3) + 1 \cdot 2x + 1 \cdot (-3) = 2x^2 - 3x + 2x - 3 = 2x^2 - x - 3 \] ### Step 2: Rewrite the integral Now, we can rewrite the integral: \[ \int \frac{2x^2 - x - 3}{x} \, dx \] ### Step 3: Simplify the integrand Next, we can simplify the integrand by dividing each term by \(x\): \[ \int \left( \frac{2x^2}{x} - \frac{x}{x} - \frac{3}{x} \right) \, dx = \int (2x - 1 - \frac{3}{x}) \, dx \] ### Step 4: Integrate term by term Now we can integrate each term separately: 1. \(\int 2x \, dx = 2 \cdot \frac{x^2}{2} = x^2\) 2. \(\int -1 \, dx = -x\) 3. \(\int -\frac{3}{x} \, dx = -3 \ln |x|\) Combining these results, we have: \[ \int (2x - 1 - \frac{3}{x}) \, dx = x^2 - x - 3 \ln |x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{(x+1)(2x-3)}{x} \, dx = x^2 - x - 3 \ln |x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int ((1+x)^(3))/(sqrt(x))dx " "(ii) int((1+x)^(3))/(x^(4)) dx

int((x-1)(x-2)(x-3))/((x+1)(x+2)(x+3))dx

int ((1+x)^3)/(x^2) dx

int (x+1)/(2x^2+3x+4) dx

int(2x+1)/((x+2)(x-3))dx

Find int ((x-1)/ ((x-2)(x-3))) dx

Evaluate: int(x^3)/((x-1)(x-2)(x-3))\ dx

Evaluate: int(x^2)/((x-1)(x-2)(x-3))\ dx

Evaluate: int(2x+1)/((x-2)(x-3))\ dx

int(x)/((x-1)(x-2)(x-3))dx