Home
Class 12
MATHS
inte^(x+3) dx...

`inte^(x+3) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{(x+3)} \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int e^{(x+3)} \, dx \] ### Step 2: Use substitution Let’s perform a substitution to simplify the integral. We can let: \[ t = x + 3 \] Then, the differential \( dx \) becomes: \[ dx = dt \] ### Step 3: Rewrite the integral in terms of \( t \) Substituting \( t \) into the integral gives us: \[ I = \int e^t \, dt \] ### Step 4: Integrate The integral of \( e^t \) is: \[ \int e^t \, dt = e^t + C \] where \( C \) is the constant of integration. ### Step 5: Substitute back to the original variable Now, we substitute back \( t = x + 3 \): \[ I = e^{(x + 3)} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int e^{(x+3)} \, dx = e^{(x + 3)} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

inte^(2x+3)dx

int e^(2x+3) dx

Evaluate: (i) inte^(2x-3)\ dx (ii) inta^(3x+2)\ dx

inte^(4-3x) dx

int e^x(3+x) dx

Evaluate int sec^(3)x dx .

int(x+3)dx

int x^(5/3)dx

Evaluate: int (2x + 3)dx

Evaluate: int(5x+3)\ dx