Home
Class 12
MATHS
int(sinx)/(1+sin x) dx...

`int(sinx)/(1+sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Multiply and Divide by \( 1 - \sin x \) We start by multiplying and dividing the integrand by \( 1 - \sin x \): \[ I = \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx \] ### Step 2: Simplify the Denominator Using the difference of squares, we simplify the denominator: \[ 1 + \sin x)(1 - \sin x) = 1 - \sin^2 x = \cos^2 x \] Thus, the integral becomes: \[ I = \int \frac{\sin x (1 - \sin x)}{\cos^2 x} \, dx \] ### Step 3: Expand the Numerator Now, we can expand the numerator: \[ I = \int \frac{\sin x - \sin^2 x}{\cos^2 x} \, dx \] ### Step 4: Split the Integral We can split the integral into two parts: \[ I = \int \frac{\sin x}{\cos^2 x} \, dx - \int \frac{\sin^2 x}{\cos^2 x} \, dx \] ### Step 5: Rewrite the Integrals We can rewrite the integrals using trigonometric identities: \[ I = \int \tan x \sec^2 x \, dx - \int \tan^2 x \, dx \] ### Step 6: Integrate the First Part The integral of \( \tan x \sec^2 x \) is: \[ \int \tan x \sec^2 x \, dx = \sec x \] ### Step 7: Integrate the Second Part For the second integral, we use the identity \( \tan^2 x = \sec^2 x - 1 \): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] The integral of \( \sec^2 x \) is \( \tan x \) and the integral of \( 1 \) is \( x \): \[ \int \tan^2 x \, dx = \tan x - x \] ### Step 8: Combine the Results Putting it all together, we have: \[ I = \sec x - (\tan x - x) + C \] Thus, simplifying gives: \[ I = \sec x - \tan x + x + C \] ### Final Answer The final result for the integral is: \[ \int \frac{\sin x}{1 + \sin x} \, dx = \sec x - \tan x + x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

int(cos x)/(1+sinx) dx

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sin(x-a))/(sinx)\ dx

Evaluate: int(sinx)/(sin(x-a))\ dx