Home
Class 12
MATHS
int(1-x)/(sqrt(x))dx...

`int(1-x)/(sqrt(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1-x}{\sqrt{x}} \, dx \), we can break it down into simpler parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1-x}{\sqrt{x}} \, dx \] We can separate the terms in the numerator: \[ I = \int \left( \frac{1}{\sqrt{x}} - \frac{x}{\sqrt{x}} \right) \, dx \] This simplifies to: \[ I = \int \left( \frac{1}{\sqrt{x}} - \sqrt{x} \right) \, dx \] ### Step 2: Integrate Each Term Now we can integrate each term separately: 1. The integral of \( \frac{1}{\sqrt{x}} \): \[ \int \frac{1}{\sqrt{x}} \, dx = 2\sqrt{x} \] 2. The integral of \( \sqrt{x} \): \[ \int \sqrt{x} \, dx = \int x^{1/2} \, dx = \frac{2}{3} x^{3/2} \] ### Step 3: Combine the Results Putting it all together, we have: \[ I = 2\sqrt{x} - \frac{2}{3} x^{3/2} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the value of the integral is: \[ \int \frac{1-x}{\sqrt{x}} \, dx = 2\sqrt{x} - \frac{2}{3} x^{3/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1+x)/(1+3sqrt(x))dx is equal to

int(1-x^(2))sqrt(x)dx

The value of int(1)/(x+sqrt(x-1))dx , is

Evaluate: int((1+x)^2)/(sqrt(x))\ dx

Evaluate the following integrals : int((1+x)^3)/(sqrt(x))dx

Evaluate: (i) int((1+x)^3)/(sqrt(x))\ dx (ii) int{x^2+e^(logx)+(e/2)^x}\ dx

int (x-1)sqrt(x+1)dx

Evaluate: int((1+sqrt(x))^2)/(sqrt(x))dx

int sqrt((1+sqrt(x))/(1-sqrt(x))dx

Evaluate: int1/(sqrt(x)+x)dx