Home
Class 12
MATHS
int(1)/(sqrt(5-.(x^(2))/(4)))dx...

`int(1)/(sqrt(5-.(x^(2))/(4)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{5 - \frac{x^2}{4}}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the expression under the square root. Notice that: \[ 5 - \frac{x^2}{4} = 5 - \left(\frac{x}{2}\right)^2 \] Thus, we can rewrite the integral as: \[ \int \frac{1}{\sqrt{5 - \left(\frac{x}{2}\right)^2}} \, dx \] ### Step 2: Identify the Form Now we can identify this integral with the standard form: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + C \] Here, we can set \( a = \sqrt{5} \) and \( x = \frac{x}{2} \). ### Step 3: Change of Variables To apply the formula, we need to change the variable. Let: \[ u = \frac{x}{2} \quad \Rightarrow \quad x = 2u \quad \Rightarrow \quad dx = 2 \, du \] Substituting this into the integral gives: \[ \int \frac{1}{\sqrt{5 - u^2}} \cdot 2 \, du = 2 \int \frac{1}{\sqrt{5 - u^2}} \, du \] ### Step 4: Apply the Standard Integral Formula Now we can apply the standard integral formula: \[ 2 \int \frac{1}{\sqrt{5 - u^2}} \, du = 2 \sin^{-1}\left(\frac{u}{\sqrt{5}}\right) + C \] Substituting back \( u = \frac{x}{2} \): \[ = 2 \sin^{-1}\left(\frac{\frac{x}{2}}{\sqrt{5}}\right) + C = 2 \sin^{-1}\left(\frac{x}{2\sqrt{5}}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\sqrt{5 - \frac{x^2}{4}}} \, dx = 2 \sin^{-1}\left(\frac{x}{2\sqrt{5}}\right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(3-(x^(2))/(4))dx)

int(dx)/(sqrt(1-5x^(2)))

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(1)/(sqrt(4x^(2)-x+4))dx

Evaluate : int(dx)/(sqrt(5-4x^(2))

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate: int(x+1)/(sqrt(4+5x-x^2))\ dx

Evaluate : int (2x+4)/(sqrt(x^(2)+4x+5))dx

4. int1/sqrt(4x-x^2)dx