Home
Class 12
MATHS
(i) int sin 2x. cos5x dx " "(ii) in...

`(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \( \int \sin(2x) \cos(5x) \, dx \) **Step 1: Use the product-to-sum identities.** We can rewrite the product of sine and cosine using the identity: \[ \sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \] Here, \( A = 2x \) and \( B = 5x \). So, \[ \sin(2x) \cos(5x) = \frac{1}{2} [\sin(2x + 5x) + \sin(2x - 5x)] = \frac{1}{2} [\sin(7x) + \sin(-3x)] \] **Step 2: Simplify using the property of sine.** Since \( \sin(-\theta) = -\sin(\theta) \), we have: \[ \sin(-3x) = -\sin(3x) \] Thus, \[ \sin(2x) \cos(5x) = \frac{1}{2} [\sin(7x) - \sin(3x)] \] **Step 3: Substitute back into the integral.** Now we can rewrite the integral: \[ \int \sin(2x) \cos(5x) \, dx = \frac{1}{2} \int [\sin(7x) - \sin(3x)] \, dx \] **Step 4: Integrate each term.** Now we integrate: \[ \int \sin(7x) \, dx = -\frac{1}{7} \cos(7x) + C_1 \] \[ \int \sin(3x) \, dx = -\frac{1}{3} \cos(3x) + C_2 \] Putting it all together: \[ \int \sin(2x) \cos(5x) \, dx = \frac{1}{2} \left(-\frac{1}{7} \cos(7x) + \frac{1}{3} \cos(3x)\right) + C \] **Step 5: Simplify the expression.** This gives us: \[ = -\frac{1}{14} \cos(7x) + \frac{1}{6} \cos(3x) + C \] ### Final Answer for Part (i): \[ \int \sin(2x) \cos(5x) \, dx = -\frac{1}{14} \cos(7x) + \frac{1}{6} \cos(3x) + C \] --- ### Part (ii): \( \int \frac{\sin(4x)}{\sin(x)} \, dx \) **Step 1: Rewrite \(\sin(4x)\) using the double angle formula.** We know that: \[ \sin(4x) = 2 \sin(2x) \cos(2x) \] Thus, we can rewrite the integral as: \[ \int \frac{2 \sin(2x) \cos(2x)}{\sin(x)} \, dx \] **Step 2: Use the identity for \(\sin(2x)\).** Recall that: \[ \sin(2x) = 2 \sin(x) \cos(x) \] So, substituting this into our integral gives: \[ \int \frac{2(2 \sin(x) \cos(x)) \cos(2x)}{\sin(x)} \, dx = \int 4 \cos(x) \cos(2x) \, dx \] **Step 3: Use the product-to-sum identities again.** Using the identity: \[ \cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A - B)] \] we have: \[ \cos(x) \cos(2x) = \frac{1}{2} [\cos(3x) + \cos(x)] \] **Step 4: Substitute back into the integral.** Now we can rewrite the integral: \[ \int 4 \cos(x) \cos(2x) \, dx = 4 \cdot \frac{1}{2} \int [\cos(3x) + \cos(x)] \, dx = 2 \int [\cos(3x) + \cos(x)] \, dx \] **Step 5: Integrate each term.** Now we integrate: \[ \int \cos(3x) \, dx = \frac{1}{3} \sin(3x) + C_1 \] \[ \int \cos(x) \, dx = \sin(x) + C_2 \] Putting it all together: \[ 2 \int [\cos(3x) + \cos(x)] \, dx = 2 \left(\frac{1}{3} \sin(3x) + \sin(x)\right) + C \] **Step 6: Simplify the expression.** This gives us: \[ = \frac{2}{3} \sin(3x) + 2 \sin(x) + C \] ### Final Answer for Part (ii): \[ \int \frac{\sin(4x)}{\sin(x)} \, dx = \frac{2}{3} \sin(3x) + 2 \sin(x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/(cos x)*dx

int x*sin2x*cos2x*dx

int sin x cos(cos x)dx

(1) int(dx)/(5+4 sin x)

Evaluate: (i) int(sin4x)/(sin2x)\ dx (ii) int(sin4x)/(cos2x)\ dx

(i) int (cos x-x sin x)/(x cos x) dx " "(ii) int(1+ cos x)/(x +sin x)^3 dx

I=int(sin^2x)/(1+cos x)dx

int(sin x+x cos x)/(x sin x)dx

int(sin 2x)/(5-cos^(2) x)dx

int(sin^2x)/(cos^(4)x)dx