Home
Class 12
MATHS
(i) int sqrt(1+ sin .(x)/(2)dx) (ii) i...

` (i) int sqrt(1+ sin .(x)/(2)dx)`
`(ii) int (1+cos 4x)/(cot x- tan x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): Evaluate the integral \( \int \sqrt{1 + \frac{\sin x}{2}} \, dx \) 1. **Rewrite the expression under the square root**: \[ 1 + \frac{\sin x}{2} = \frac{2}{2} + \frac{\sin x}{2} = \frac{2 + \sin x}{2} \] Thus, we can rewrite the integral as: \[ \int \sqrt{1 + \frac{\sin x}{2}} \, dx = \int \sqrt{\frac{2 + \sin x}{2}} \, dx = \int \frac{\sqrt{2 + \sin x}}{\sqrt{2}} \, dx = \frac{1}{\sqrt{2}} \int \sqrt{2 + \sin x} \, dx \] 2. **Use the identity for \( \sin x \)**: We can express \( \sin x \) in terms of \( \sin^2 \) and \( \cos^2 \): \[ 1 = \sin^2 \frac{x}{4} + \cos^2 \frac{x}{4} \] Therefore, we can write: \[ \sqrt{2 + \sin x} = \sqrt{2 + 2\sin\frac{x}{2}\cos\frac{x}{2}} = \sqrt{(\sin\frac{x}{4} + \cos\frac{x}{4})^2} \] 3. **Integrate**: Now, we can integrate: \[ \int \sqrt{2 + \sin x} \, dx = \int \left( \sin\frac{x}{4} + \cos\frac{x}{4} \right) \, dx \] This gives: \[ = -4\cos\frac{x}{4} + 4\sin\frac{x}{4} + C \] 4. **Final result**: Therefore, the final result for part (i) is: \[ \int \sqrt{1 + \frac{\sin x}{2}} \, dx = \frac{1}{\sqrt{2}} \left(-4\cos\frac{x}{4} + 4\sin\frac{x}{4}\right) + C \] ### Part (ii): Evaluate the integral \( \int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx \) 1. **Rewrite the denominator**: \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{\cos 2x}{\sin x \cos x} \] 2. **Rewrite the integral**: Thus, we can rewrite the integral as: \[ \int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx = \int \frac{(1 + \cos 4x) \sin x \cos x}{\cos 2x} \, dx \] 3. **Use the identity for \( \cos 4x \)**: Using the identity \( 1 + \cos 4x = 2\cos^2 2x \): \[ = \int \frac{2\cos^2 2x \sin x \cos x}{\cos 2x} \, dx = 2 \int \sin x \cos x \cos 2x \, dx \] 4. **Use the double angle identity**: Using \( \sin 2x = 2\sin x \cos x \): \[ = \int \sin 2x \cos 2x \, dx \] 5. **Integrate**: The integral of \( \sin 2x \cos 2x \) can be simplified using the identity: \[ \sin 2x \cos 2x = \frac{1}{2} \sin 4x \] Thus: \[ = \frac{1}{2} \int \sin 4x \, dx = -\frac{1}{8} \cos 4x + C \] 6. **Final result**: Therefore, the final result for part (ii) is: \[ \int \frac{1 + \cos 4x}{\cot x - \tan x} \, dx = -\frac{1}{8} \cos 4x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int (cos x-x sin x)/(x cos x) dx " "(ii) int(1+ cos x)/(x +sin x)^3 dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

int(cos 4x-1)/(cot x-tanx)dx is equal to

Evaluate: (i) int(sin4x)/(sin2x)\ dx (ii) int(sin4x)/(cos2x)\ dx

int(1)/(cos x . cot x ) dx

Evaluate : (i) int (cos2x+2sin^2x)/(sin^2x)dx (ii) int(2cos^2x-cos2x)/(cos^2x)dx

(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx

Evaluate: (i) int(cos^3x)/(sqrt(sinx))\ dx (ii) int(sin^3x)/(sqrt(cosx)\ )\ dx

(i)intsec^(7) x. sin x dx" "(ii) int(1)/(sinx. cos^(2) x)dx

Evaluate: (i) int(sinx+2cosx)/(2sinx+cosx)\ dx (ii) int(cos4x-cos2x)/(sin4x-sin2x)\ dx