Home
Class 12
MATHS
intx^(2) . sin x^(3) dx...

`intx^(2) . sin x^(3) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \sin(x^3) \, dx \), we will use the method of substitution. Here is the step-by-step solution: ### Step 1: Choose a substitution Let \( t = x^3 \). Then, we differentiate both sides to find \( dt \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] ### Step 2: Substitute in the integral Now, we can express \( x^2 \) in terms of \( t \): \[ x^2 = \left( \frac{t}{x} \right)^{\frac{2}{3}} \quad \text{(but we will keep it as is for now)} \] Substituting \( t \) and \( dx \) into the integral: \[ \int x^2 \sin(x^3) \, dx = \int x^2 \sin(t) \cdot \frac{dt}{3x^2} \] This simplifies to: \[ \int \sin(t) \cdot \frac{dt}{3} = \frac{1}{3} \int \sin(t) \, dt \] ### Step 3: Integrate The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) + C \] Thus, \[ \frac{1}{3} \int \sin(t) \, dt = -\frac{1}{3} \cos(t) + C \] ### Step 4: Substitute back Now, we substitute back \( t = x^3 \): \[ -\frac{1}{3} \cos(t) + C = -\frac{1}{3} \cos(x^3) + C \] ### Final Answer Therefore, the integral \( \int x^2 \sin(x^3) \, dx \) evaluates to: \[ -\frac{1}{3} \cos(x^3) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intx cos^(3) x^(2) . sin x^(2) dx

intx^(2) . tan^(2) x^(3). sec^(2) x^(3) dx

intx^(1/3)sin(x^(4/3))dx

Evaluate : intx^(2n-1)sin(x^(n))dx

Evaluate: intx^3 + sin2x\ dx

Evaluate: intx^2\ cos^(-1)\ x\ dx

Evaluate: intx^2sin^(-1)x\ dx

Evaluate : intx^(3)sqrt(x^(2)-4) dx

Write a value of intx^2sinx^3\ dx

Evaluate: intx^2sqrt (a^3+x^3)dx