Home
Class 12
MATHS
int cot^(3) x. cosec^(2) x dx...

`int cot^(3) x. cosec^(2) x dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cot^3 x \csc^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \cot^3 x \csc^2 x \, dx \] ### Step 2: Use Substitution We know that the derivative of \( \cot x \) is \( -\csc^2 x \). Therefore, we can use the substitution: \[ t = \cot x \quad \Rightarrow \quad dt = -\csc^2 x \, dx \] This implies: \[ dx = -\frac{dt}{\csc^2 x} \] Substituting \( \csc^2 x \) in terms of \( t \): \[ \csc^2 x = 1 + \cot^2 x = 1 + t^2 \] Thus, we can rewrite \( dx \) as: \[ dx = -\frac{dt}{1 + t^2} \] ### Step 3: Substitute into the Integral Now substituting \( t \) into the integral: \[ I = \int t^3 \cdot (-dt) = -\int t^3 \, dt \] ### Step 4: Integrate Now we can integrate \( -\int t^3 \, dt \): \[ -\int t^3 \, dt = -\left( \frac{t^4}{4} \right) + C = -\frac{t^4}{4} + C \] ### Step 5: Substitute Back Now we substitute back \( t = \cot x \): \[ I = -\frac{\cot^4 x}{4} + C \] ### Final Answer Thus, the final answer is: \[ \int \cot^3 x \csc^2 x \, dx = -\frac{\cot^4 x}{4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int cot^3 x dx

(1) int cot^(2)x,*cosec^(2)xdx

int cot^6x cosec^2xdx

intcot^3x cosec^4x dx

int_(0)^(pi//4) cot x. " cosec"^(2) x dx

int cot^-1 x dx

The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C is a constant of integration)

int cot^2 x dx

int cot^6 x dx

int e^(x). "(cot x- cosec"^(2)" x) dx "