Home
Class 12
MATHS
int(x^(2))/(1+x^(6)) dx...

`int(x^(2))/(1+x^(6)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{1 + x^6} \, dx \), we will use substitution. Here are the steps: ### Step-by-Step Solution 1. **Identify the Integral**: \[ I = \int \frac{x^2}{1 + x^6} \, dx \] 2. **Substitution**: Let \( t = x^3 \). Then, differentiate both sides: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] From the substitution \( t = x^3 \), we can express \( x^2 \) in terms of \( t \): \[ x^2 = t^{2/3} \] 3. **Rewrite the Integral**: Substitute \( x^2 \) and \( dx \) into the integral: \[ I = \int \frac{t^{2/3}}{1 + (t)^2} \cdot \frac{dt}{3t^{2/3}} = \int \frac{1}{3(1 + t^2)} \, dt \] 4. **Factor out the Constant**: \[ I = \frac{1}{3} \int \frac{1}{1 + t^2} \, dt \] 5. **Integrate**: The integral of \( \frac{1}{1 + t^2} \) is \( \tan^{-1}(t) \): \[ I = \frac{1}{3} \tan^{-1}(t) + C \] 6. **Back Substitute**: Replace \( t \) back with \( x^3 \): \[ I = \frac{1}{3} \tan^{-1}(x^3) + C \] ### Final Answer: \[ \int \frac{x^2}{1 + x^6} \, dx = \frac{1}{3} \tan^{-1}(x^3) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^2)/(x^(2)+1)dx

int(x^(2) +1)/((x+1))dx

Evaluate: int(x^2)/(sqrt(1-x^6))dx

Evaluate: int(x^2)/(sqrt(1-x^6))dx

Integrate I = int(6x^5)/(1+x^6)dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to