Home
Class 12
MATHS
int((log (e)x)^(3))/(x)dx...

`int((log _(e)x)^(3))/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{(\log_e x)^3}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log_e x \). Then, differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt \] Since \( x = e^t \), we can also express \( dx \) in terms of \( t \): \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Now substitute \( t \) into the integral: \[ I = \int \frac{t^3}{x} \, dx = \int t^3 \cdot \frac{dx}{x} \] Since \( \frac{dx}{x} = dt \), we have: \[ I = \int t^3 \, dt \] ### Step 3: Integrate Now, we can integrate \( t^3 \): \[ I = \frac{t^{3+1}}{3+1} + C = \frac{t^4}{4} + C \] ### Step 4: Resubstitute Now, substitute back \( t = \log_e x \): \[ I = \frac{(\log_e x)^4}{4} + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{(\log_e x)^4}{4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

int log_(e)(a^(x))dx=

Evaluate int 5^(log _(e)x)dx

int(cos^(2) (log .x))/(x)dx

int(tan(1+log x))/(x) dx

Evaluate int (sin(log x))/(x)dx

Evaluate : int (e^("log x "))/(x) " dx "

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=