Home
Class 12
MATHS
int ( x^(2))/(sqrt(1+x^(3)))dx...

`int ( x^(2))/(sqrt(1+x^(3)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{\sqrt{1+x^3}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t^2 = 1 + x^3 \). This implies that \( x^3 = t^2 - 1 \). ### Step 2: Differentiate to find \( dx \) Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(t^2) = 3x^2 \implies 2t \frac{dt}{dx} = 3x^2 \implies dx = \frac{2t}{3x^2} dt \] ### Step 3: Express \( x^2 \) in terms of \( t \) From the substitution \( t^2 = 1 + x^3 \), we can express \( x^2 \) as follows: \[ x^3 = t^2 - 1 \implies x = (t^2 - 1)^{1/3} \] To find \( x^2 \), we can cube both sides: \[ x^2 = \left((t^2 - 1)^{1/3}\right)^{2} = (t^2 - 1)^{2/3} \] ### Step 4: Substitute into the integral Now substitute \( x^2 \) and \( dx \) into the integral: \[ \int \frac{x^2}{\sqrt{1+x^3}} \, dx = \int \frac{(t^2 - 1)^{2/3}}{\sqrt{t^2}} \cdot \frac{2t}{3x^2} dt \] Since \( \sqrt{t^2} = t \), we have: \[ = \int \frac{(t^2 - 1)^{2/3}}{t} \cdot \frac{2t}{3(t^2 - 1)^{2/3}} dt \] This simplifies to: \[ = \frac{2}{3} \int dt \] ### Step 5: Integrate Now we can integrate: \[ \frac{2}{3} \int dt = \frac{2}{3} t + C \] ### Step 6: Back-substitute for \( t \) Recall that \( t = \sqrt{1 + x^3} \): \[ = \frac{2}{3} \sqrt{1 + x^3} + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{x^2}{\sqrt{1+x^3}} \, dx = \frac{2}{3} \sqrt{1 + x^3} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (x^(2) +1)/(sqrt(x^(2)+3))dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int(1-x^(2))sqrt(x)dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx