Home
Class 12
MATHS
int secx. log (sec x+ tan x ) dx...

`int secx. log (sec x+ tan x ) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sec x \cdot \log(\sec x + \tan x) \, dx \), we will use substitution and integration techniques. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \log(\sec x + \tan x) \). ### Step 2: Differentiate the substitution Now, we differentiate both sides with respect to \( x \): \[ dt = \frac{1}{\sec x + \tan x} \cdot \left( \sec x \tan x + \sec^2 x \right) \, dx \] This simplifies to: \[ dt = \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} \, dx \] ### Step 3: Simplify the expression Notice that: \[ \sec x + \tan x = \frac{1 + \sin x}{\cos x} \] Thus, we can rewrite \( dt \) as: \[ dt = \sec x \, dx \] This means: \[ \sec x \, dx = dt \] ### Step 4: Substitute back into the integral Now we can substitute back into the integral: \[ I = \int t \, dt \] ### Step 5: Integrate The integral of \( t \) is: \[ I = \frac{t^2}{2} + C \] ### Step 6: Substitute \( t \) back Now we substitute \( t \) back into the expression: \[ I = \frac{(\log(\sec x + \tan x))^2}{2} + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{(\log(\sec x + \tan x))^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec x ln(sec x+tan x)dx=

int(secx- tan x)/(sec x+ tan x) dx

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx

int secx / (secx+tanx)dx =

Evaluate: int(secx)/(log(secx+tanx)dx

Evaluate: inte^x\ [(secx+log(secx+tanx)]\ dx

Evaluate: (i) int(secx)/(log(secx+tanx)\ dx (ii) int(cos e c\ x)/(logtanx/2)\ dx

int x sec x*tan xdx

(i) int(sec x* cosec x)/(log cot x) dx (ii) int tan^(4) x\ dx

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is