Home
Class 12
MATHS
int(x)/(sqrt(1+x^(2)))dx...

`int(x)/(sqrt(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x}{\sqrt{1+x^2}} \, dx\), we can follow these steps: ### Step 1: Set up the integral Let \(I = \int \frac{x}{\sqrt{1+x^2}} \, dx\). ### Step 2: Use substitution We will use the substitution \(t = \sqrt{1+x^2}\). Then, squaring both sides gives us: \[ t^2 = 1 + x^2 \implies x^2 = t^2 - 1 \] Differentiating both sides with respect to \(x\): \[ 2x \, dx = 2t \, dt \implies x \, dx = t \, dt \] ### Step 3: Substitute in the integral Now, substituting \(x \, dx\) and \(\sqrt{1+x^2}\) in the integral: \[ I = \int \frac{x \, dx}{\sqrt{1+x^2}} = \int \frac{t \, dt}{t} = \int dt \] ### Step 4: Integrate The integral of \(dt\) is: \[ I = t + C \] ### Step 5: Substitute back for \(t\) Now, we substitute back \(t = \sqrt{1+x^2}\): \[ I = \sqrt{1+x^2} + C \] ### Final Answer Thus, the integral \(\int \frac{x}{\sqrt{1+x^2}} \, dx\) evaluates to: \[ \int \frac{x}{\sqrt{1+x^2}} \, dx = \sqrt{1+x^2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(1+x-x^(2)))dx

Evaluate : int(x^2)/(sqrt(1-x^2))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

Evaluate: int(x^2)/(sqrt(1-x^2 ))dx

Evaluate: int(x^2)/(sqrt(1-x^2))\ dx

int(3x-1)/(sqrt(x^(2)+9))dx

(i) int(2cos x)/(sqrt(1-4cos^(2) x))dx " "(ii) int (x+1)/(sqrt(x^(2)+1))dx

Evaluate: int(x+1)/sqrt (1+x^2)dx

Find int(xsin^(-1)x)/(sqrt(1-x^2))dx

Find : int(xsin^(-1)x)/(sqrt(1-x^2))dx