Home
Class 12
MATHS
int (x^(2))/(1-2x^(3))dx...

`int (x^(2))/(1-2x^(3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{1 - 2x^3} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 - 2x^3 \). Then, we need to find \( dt \): \[ dt = -6x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{-6x^2} \] ### Step 2: Express \( x^2 \, dx \) in terms of \( dt \) From the equation \( dt = -6x^2 \, dx \), we can express \( x^2 \, dx \): \[ x^2 \, dx = -\frac{1}{6} \, dt \] ### Step 3: Substitute in the integral Now, substitute \( t \) and \( x^2 \, dx \) into the integral: \[ \int \frac{x^2}{1 - 2x^3} \, dx = \int \frac{x^2}{t} \left(-\frac{1}{6} dt\right) = -\frac{1}{6} \int \frac{dt}{t} \] ### Step 4: Integrate The integral \( \int \frac{dt}{t} \) is a standard integral: \[ -\frac{1}{6} \int \frac{dt}{t} = -\frac{1}{6} \log |t| + C \] ### Step 5: Substitute back for \( t \) Now, substitute back \( t = 1 - 2x^3 \): \[ -\frac{1}{6} \log |1 - 2x^3| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{x^2}{1 - 2x^3} \, dx = -\frac{1}{6} \log |1 - 2x^3| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (2x^2)/(x^3+1) dx

int (2x^2)/(x^3+1) dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

int3x^(1//2)(1+x^(3//2))dx

int (x+1)/(2x^2+3x+4) dx

int(3x+1)/(2x^(2)+x-1)dx

Evaluate: int(x^2)/((x-1)^3(x+1))dx

Evaluate: int(x^2+1)/((x-1)^2(x+3))dx

Evaluate: int(x^2+1)/((x-1)^2(x+3))dx

Evaluate: int(x^2+1)/((x-2)^2(x+3))\ dx