Home
Class 12
MATHS
inte^(x) .(a+be^(x))^(n) dx...

`inte^(x) .(a+be^(x))^(n) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (a + b e^x)^n \, dx \), we can use substitution to simplify the integration process. Here’s a step-by-step solution: ### Step 1: Substitution Let: \[ t = a + b e^x \] Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = b e^x \] This implies: \[ dt = b e^x \, dx \quad \Rightarrow \quad e^x \, dx = \frac{dt}{b} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ \int e^x (a + b e^x)^n \, dx = \int (t)^n \cdot \frac{dt}{b} \] This simplifies to: \[ \frac{1}{b} \int t^n \, dt \] ### Step 3: Integrate The integral of \( t^n \) is given by: \[ \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \] Thus, we have: \[ \frac{1}{b} \int t^n \, dt = \frac{1}{b} \left( \frac{t^{n+1}}{n+1} + C \right) = \frac{t^{n+1}}{b(n+1)} + \frac{C}{b} \] ### Step 4: Substitute Back Now we substitute back \( t = a + b e^x \): \[ \frac{(a + b e^x)^{n+1}}{b(n+1)} + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int e^x (a + b e^x)^n \, dx = \frac{(a + b e^x)^{n+1}}{b(n+1)} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

Connect int x^(m-1)(a+bx^(n))^(p)dx with int x^(m-n-1)(a+bx^(n))^(p)dx and evaluate int(x^(8)dx)/((1-x^(3))^(1//3)) .

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If inte^(x)/(x^(n))dx and -e^(x)/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1) , then (k_(2)-k_(1)) is equal to:

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

int(x)/(x+a)dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

If m,n in N, then the value of int_a^b(x-a)^m(b-x)^n dx is equal to

Evaluate int_(0)^(infty)e^(-x) sin^(n) x dx, if n is an even integer.