Home
Class 12
MATHS
(i) int(tan^(-1))/((1+x^(2)))dx" "(i...

`(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### (i) Evaluate the integral \( I_1 = \int \frac{\tan^{-1} x}{1 + x^2} \, dx \) **Step 1: Substitution** Let \( t = \tan^{-1} x \). Then, differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{1 + x^2} \] This implies: \[ dx = (1 + x^2) dt \] **Step 2: Rewrite the integral** Substituting \( t \) and \( dx \) into the integral: \[ I_1 = \int t \cdot \frac{1}{1 + x^2} (1 + x^2) dt = \int t \, dt \] **Step 3: Integrate** Now, we can integrate: \[ \int t \, dt = \frac{t^2}{2} + C_1 \] **Step 4: Substitute back** Replace \( t \) with \( \tan^{-1} x \): \[ I_1 = \frac{(\tan^{-1} x)^2}{2} + C_1 \] ### Final Result for (i): \[ I_1 = \frac{(\tan^{-1} x)^2}{2} + C_1 \] --- ### (ii) Evaluate the integral \( I_2 = \int \frac{1}{\sqrt{1 - x^2}} \sin^{-1} x \, dx \) **Step 1: Substitution** Let \( t = \sin^{-1} x \). Then, differentiate both sides: \[ \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \] This implies: \[ dx = \sqrt{1 - x^2} \, dt \] **Step 2: Rewrite the integral** Substituting \( t \) and \( dx \) into the integral: \[ I_2 = \int \frac{1}{\sqrt{1 - x^2}} t \cdot \sqrt{1 - x^2} \, dt = \int t \, dt \] **Step 3: Integrate** Now, we can integrate: \[ \int t \, dt = \frac{t^2}{2} + C_2 \] **Step 4: Substitute back** Replace \( t \) with \( \sin^{-1} x \): \[ I_2 = \frac{(\sin^{-1} x)^2}{2} + C_2 \] ### Final Result for (ii): \[ I_2 = \frac{(\sin^{-1} x)^2}{2} + C_2 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

int(1)/(sqrt(1-sin x))dx

int(1)/(sqrt(1-tan^(2)x))dx

I=int dx/(sqrt(1-x^(2))(9+(sin^(-1)x)^(2))

Evaluate: (i) int(x+1)/(x\ (x+logx)\ dx (ii) int1/(sqrt(1-x^2)(2+3sin^(-1)x)\ dx

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

(i) int(2cos x)/(sqrt(1-4cos^(2) x))dx " "(ii) int (x+1)/(sqrt(x^(2)+1))dx

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .