Home
Class 12
MATHS
intsin^(2) n x dx...

`intsin^(2) n x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^2(nx) \, dx \), we will use a trigonometric identity to simplify the expression. Here’s a step-by-step solution: ### Step 1: Use the Trigonometric Identity We know that: \[ \sin^2(x) = \frac{1 - \cos(2x)}{2} \] Applying this identity to \( \sin^2(nx) \): \[ \sin^2(nx) = \frac{1 - \cos(2nx)}{2} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \sin^2(nx) \, dx = \int \frac{1 - \cos(2nx)}{2} \, dx \] This can be separated into two integrals: \[ = \frac{1}{2} \int (1 - \cos(2nx)) \, dx = \frac{1}{2} \left( \int 1 \, dx - \int \cos(2nx) \, dx \right) \] ### Step 3: Integrate Each Term Now we will integrate each term separately: 1. The integral of \( 1 \) is: \[ \int 1 \, dx = x \] 2. The integral of \( \cos(2nx) \) is: \[ \int \cos(2nx) \, dx = \frac{\sin(2nx)}{2n} \] ### Step 4: Combine the Results Now substituting back into our expression: \[ \int \sin^2(nx) \, dx = \frac{1}{2} \left( x - \frac{\sin(2nx)}{2n} \right) \] This simplifies to: \[ = \frac{x}{2} - \frac{\sin(2nx)}{4n} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \sin^2(nx) \, dx = \frac{x}{2} - \frac{\sin(2nx)}{4n} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intsin^(5) x dx

intsin^2b\ x\ dx

Evaluate: intsin^2x\ dx

intsin^2(2x+5)\ dx

intsin^3(2x+1)\ dx

Evaluate: intsin^(-1)x\ dx

Evaluate intsin^2xdx

intsin^2(x+1) dx

intsin^2(2x+5)dx

Evaluate: intsin^4 2x\ dx