Home
Class 12
MATHS
int " cosec"^(4) 2x dx...

`int " cosec"^(4) 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \csc^4(2x) \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can express \( \csc^4(2x) \) in terms of \( \cot^2(2x) \): \[ I = \int \csc^4(2x) \, dx = \int \csc^2(2x)(\csc^2(2x)) \, dx \] Using the identity \( \csc^2(2x) = 1 + \cot^2(2x) \), we can rewrite the integral: \[ I = \int \csc^2(2x) \, dx + \int \csc^2(2x) \cot^2(2x) \, dx \] ### Step 2: Solve the First Integral The first integral is straightforward: \[ \int \csc^2(2x) \, dx = -\frac{1}{2} \cot(2x) + C_1 \] ### Step 3: Solve the Second Integral For the second integral, we let \( t = \cot(2x) \). Then, differentiating both sides gives: \[ dt = -2 \csc^2(2x) \, dx \quad \Rightarrow \quad dx = -\frac{dt}{2 \csc^2(2x)} \] Substituting this into the integral: \[ \int \csc^2(2x) \cot^2(2x) \, dx = \int t^2 \left(-\frac{dt}{2}\right) = -\frac{1}{2} \int t^2 \, dt \] ### Step 4: Integrate \( t^2 \) Now, we can integrate \( t^2 \): \[ -\frac{1}{2} \int t^2 \, dt = -\frac{1}{2} \cdot \frac{t^3}{3} + C_2 = -\frac{t^3}{6} + C_2 \] ### Step 5: Substitute Back Now we substitute \( t = \cot(2x) \) back into the equation: \[ -\frac{t^3}{6} = -\frac{\cot^3(2x)}{6} \] ### Step 6: Combine the Results Combining both parts of the integral, we have: \[ I = -\frac{1}{2} \cot(2x) - \frac{\cot^3(2x)}{6} + C \] ### Final Answer Thus, the final result for the integral is: \[ I = -\frac{1}{2} \cot(2x) - \frac{1}{6} \cot^3(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int "cosec"^(4)x dx

int " cosec"^(3) " x dx "

int" cos"^(4) " 2x dx "

int_(0)^(pi//4) cot x. " cosec"^(2) x dx

Evaluate : int " cosec"x dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

intsec^(6//5) x. "cosec"^(4//5) x dx

int e^(x). "(cot x- cosec"^(2)" x) dx "

int cosec^(2)(x)/(3)dx

int cot^(3) x. cosec^(2) x dx