Home
Class 12
MATHS
int cos 2x . cos 4x . cos 6x dx...

`int cos 2x . cos 4x . cos 6x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos 2x \cdot \cos 4x \cdot \cos 6x \, dx \), we will use trigonometric identities and properties of integration. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \cos 2x \cdot \cos 4x \cdot \cos 6x \, dx \] ### Step 2: Use the Product-to-Sum Formula We can use the product-to-sum identities. First, we multiply and divide by 2: \[ I = \frac{1}{2} \int 2 \cos 2x \cdot \cos 6x \cdot \cos 4x \, dx \] Using the identity \( 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \), we apply it to \( 2 \cos 2x \cos 6x \): \[ 2 \cos 2x \cos 6x = \cos(8x) + \cos(-4x) = \cos(8x) + \cos(4x) \] Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \int (\cos 8x + \cos 4x) \cos 4x \, dx \] ### Step 3: Expand the Integral Now we expand the integral: \[ I = \frac{1}{2} \int \cos 8x \cos 4x \, dx + \frac{1}{2} \int \cos^2 4x \, dx \] ### Step 4: Apply Product-to-Sum Formula Again For the first integral \( \int \cos 8x \cos 4x \, dx \), we use the product-to-sum formula again: \[ 2 \cos 8x \cos 4x = \cos(12x) + \cos(4x) \] Thus, \[ \int \cos 8x \cos 4x \, dx = \frac{1}{2} \int (\cos(12x) + \cos(4x)) \, dx \] ### Step 5: Integrate Each Term Now we can integrate each term: 1. \( \int \cos(12x) \, dx = \frac{\sin(12x)}{12} \) 2. \( \int \cos(4x) \, dx = \frac{\sin(4x)}{4} \) 3. For \( \int \cos^2(4x) \, dx \), we use the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \): \[ \int \cos^2(4x) \, dx = \frac{1}{2} \int (1 + \cos(8x)) \, dx = \frac{1}{2} \left( x + \frac{\sin(8x)}{8} \right) \] ### Step 6: Combine All Parts Putting it all together, we have: \[ I = \frac{1}{2} \left( \frac{1}{2} \left( \frac{\sin(12x)}{12} + \frac{\sin(4x)}{4} \right) + \frac{1}{2} \left( x + \frac{\sin(8x)}{8} \right) \right) + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{\sin(12x)}{48} + \frac{\sin(4x)}{16} + \frac{x}{4} + \frac{\sin(8x)}{32} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int cos 4x. cos 2x dx

Evaluate int cos x cos 2x cos 5x dx

Evaluate int cos x cos 2x cos 5x dx

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

Evaluate int sin x cosx * cos 2x * cos 4x dx

int cos^4 x dx

Integrate the functions cos 2x cos 4x cos 6x

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

int cos2x*cos4x*cos6x dx

int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C, then f (10) is equal to: