Home
Class 12
MATHS
int" cos"^(4) " 2x dx "...

`int" cos"^(4) " 2x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^4(2x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \cos^4(2x) \) as \( (\cos^2(2x))^2 \): \[ \int \cos^4(2x) \, dx = \int (\cos^2(2x))^2 \, dx \] ### Step 2: Use the Identity for Cosine Squared We can use the identity \( \cos^2(x) = \frac{1 + \cos(2x)}{2} \) to express \( \cos^2(2x) \): \[ \cos^2(2x) = \frac{1 + \cos(4x)}{2} \] Thus, \[ \cos^4(2x) = \left(\frac{1 + \cos(4x)}{2}\right)^2 \] ### Step 3: Expand the Expression Now we expand the square: \[ \cos^4(2x) = \frac{(1 + \cos(4x))^2}{4} = \frac{1 + 2\cos(4x) + \cos^2(4x)}{4} \] ### Step 4: Substitute Back into the Integral Now substitute this back into the integral: \[ \int \cos^4(2x) \, dx = \int \frac{1 + 2\cos(4x) + \cos^2(4x)}{4} \, dx \] This simplifies to: \[ \frac{1}{4} \int (1 + 2\cos(4x) + \cos^2(4x)) \, dx \] ### Step 5: Break Down the Integral We can break this down into three separate integrals: \[ \frac{1}{4} \left( \int 1 \, dx + 2 \int \cos(4x) \, dx + \int \cos^2(4x) \, dx \right) \] ### Step 6: Calculate Each Integral 1. The first integral: \[ \int 1 \, dx = x \] 2. The second integral: \[ \int \cos(4x) \, dx = \frac{\sin(4x)}{4} \] 3. For the third integral \( \int \cos^2(4x) \, dx \), we use the identity again: \[ \cos^2(4x) = \frac{1 + \cos(8x)}{2} \] Thus, \[ \int \cos^2(4x) \, dx = \int \frac{1 + \cos(8x)}{2} \, dx = \frac{1}{2} \left( x + \frac{\sin(8x)}{8} \right) \] ### Step 7: Combine the Results Now, substituting back into our expression: \[ \frac{1}{4} \left( x + 2 \cdot \frac{\sin(4x)}{4} + \frac{1}{2} \left( x + \frac{\sin(8x)}{8} \right) \right) \] This simplifies to: \[ \frac{1}{4} \left( x + \frac{\sin(4x)}{2} + \frac{x}{2} + \frac{\sin(8x)}{16} \right) \] Combining the \( x \) terms: \[ \frac{1}{4} \left( \frac{3x}{2} + \frac{\sin(4x)}{2} + \frac{\sin(8x)}{16} \right) \] ### Final Step: Write the Final Answer Thus, the final answer is: \[ \frac{3x}{8} + \frac{\sin(4x)}{8} + \frac{\sin(8x)}{64} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(x). " cos"^(2) " x dx"

int cos 4x. cos 2x dx

int cos^4 x dx

Evaluate : int ( " 4+3 sin x ")/(" cos"^(2) x) " dx "

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

int cos (2x +1) dx

(i) int(sinx)/(sqrt(4+ cos^(2) x)) dx " "(ii) int(x^(2))/(sqrt(9+x^(6)))dx

int (3-4 sin x)/(cos^(2) x) dx=?

int(1)/( 1+cos 2x ) dx

Evaluate the following definite integral int_0^(pi/2) cos^4 x dx