Home
Class 12
MATHS
int" cos"^(3)(3x +5) dx...

`int" cos"^(3)(3x +5) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^3(3x + 5) \, dx \), we will follow a systematic approach using substitution and integration techniques. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = 3x + 5 \). Then, differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = 3 \implies dx = \frac{dt}{3} \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \cos^3(3x + 5) \, dx = \int \cos^3(t) \cdot \frac{dt}{3} = \frac{1}{3} \int \cos^3(t) \, dt \] ### Step 3: Use Trigonometric Identity We can rewrite \( \cos^3(t) \) using the identity: \[ \cos^3(t) = \cos(t) \cdot \cos^2(t) = \cos(t) \cdot (1 - \sin^2(t)) \] Thus, the integral becomes: \[ \frac{1}{3} \int \cos(t) (1 - \sin^2(t)) \, dt = \frac{1}{3} \left( \int \cos(t) \, dt - \int \cos(t) \sin^2(t) \, dt \right) \] ### Step 4: First Integral The first integral is straightforward: \[ \int \cos(t) \, dt = \sin(t) \] ### Step 5: Second Integral For the second integral, we use substitution again. Let \( u = \sin(t) \), then \( du = \cos(t) \, dt \): \[ \int \cos(t) \sin^2(t) \, dt = \int u^2 \, du = \frac{u^3}{3} = \frac{\sin^3(t)}{3} \] ### Step 6: Combine Results Now, substituting back into our integral: \[ \frac{1}{3} \left( \sin(t) - \frac{\sin^3(t)}{3} \right) = \frac{1}{3} \sin(t) - \frac{1}{9} \sin^3(t) \] ### Step 7: Substitute Back Now we substitute back \( t = 3x + 5 \): \[ = \frac{1}{3} \sin(3x + 5) - \frac{1}{9} \sin^3(3x + 5) + C \] ### Final Result Thus, the final result of the integral is: \[ \int \cos^3(3x + 5) \, dx = \frac{1}{3} \sin(3x + 5) - \frac{1}{9} \sin^3(3x + 5) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int cos^(3) x. sin x dx

int cos 3x dx

int cos^3 x . sinx dx

int x^(5/3)dx

Evaluate : int"sin"^(3) x "cos"^(4) x dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

Evaluate: int(cosx)/(cos3x)dx

Evaluate: int(cosx)/(cos3x)dx

int sin^(2//3) x cos^(3) x dx

int (2-3 sin x)/(cos^(2) x) dx