Home
Class 12
MATHS
Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (...

Evaluate: (i) `int1/(x^2)cos^2(1/x)\ dx` (ii) `intsec^4xtanx\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the integrals step by step. ### (i) Evaluate the integral \( I_1 = \int \frac{1}{x^2} \cos^2\left(\frac{1}{x}\right) \, dx \) **Step 1: Substitution** Let \( t = \frac{1}{x} \). Then, \( x = \frac{1}{t} \) and differentiating both sides gives: \[ dx = -\frac{1}{t^2} \, dt \] Also, \( \frac{1}{x^2} = t^2 \). **Step 2: Rewrite the integral** Substituting these into the integral, we get: \[ I_1 = \int t^2 \cos^2(t) \left(-\frac{1}{t^2}\right) dt = -\int \cos^2(t) \, dt \] **Step 3: Use the trigonometric identity** Using the identity \( \cos^2(t) = \frac{1 + \cos(2t)}{2} \): \[ I_1 = -\int \frac{1 + \cos(2t)}{2} \, dt = -\frac{1}{2} \int (1 + \cos(2t)) \, dt \] **Step 4: Separate the integral** \[ I_1 = -\frac{1}{2} \left( \int 1 \, dt + \int \cos(2t) \, dt \right) \] **Step 5: Evaluate the integrals** The first integral is: \[ \int 1 \, dt = t \] The second integral is: \[ \int \cos(2t) \, dt = \frac{1}{2} \sin(2t) \] Thus, we have: \[ I_1 = -\frac{1}{2} \left( t + \frac{1}{2} \sin(2t) \right) + C \] **Step 6: Substitute back for \( t \)** Since \( t = \frac{1}{x} \): \[ I_1 = -\frac{1}{2} \left( \frac{1}{x} + \frac{1}{2} \sin\left(\frac{2}{x}\right) \right) + C \] Final result: \[ I_1 = -\frac{1}{2x} - \frac{1}{4} \sin\left(\frac{2}{x}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x^2)cos^2(1/x)dx

Evaluate: (i) int1/(sqrt(1+cos2x))\ dx

Evaluate: int1/(sinx(2cos^2x-1)dx

Evaluate: int1/(sinx(2cos^2x-1))\ dx

Evaluate: (i) int1/(1+cos2x)\ dx (ii) int1/(1-cos2x)\ dx

Evaluate: (i) int1/(1+sqrt(x))\ dx (ii) inte^cos^(2x)sin2x\ dx

Evaluate: (i) int1/(1+sqrt(x))\ dx (ii) inte^cos^(2x)sin2x\ dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate: int1/(sin^2x cos^2x)\ dx