Home
Class 12
MATHS
int e^(x). " sin x( sin x+ 2 cos x) dx "...

`int e^(x). " sin x( sin x+ 2 cos x) dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int e^x \sin x (\sin x + 2 \cos x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral First, we can rewrite the integral as: \[ I = \int e^x \left( \sin^2 x + 2 \sin x \cos x \right) \, dx \] ### Step 2: Use a Trigonometric Identity Recall that \( \sin^2 x = \frac{1 - \cos(2x)}{2} \) and \( 2 \sin x \cos x = \sin(2x) \). Therefore, we can rewrite the integral as: \[ I = \int e^x \left( \frac{1 - \cos(2x)}{2} + \sin(2x) \right) \, dx \] This simplifies to: \[ I = \int e^x \left( \frac{1}{2} - \frac{1}{2} \cos(2x) + \sin(2x) \right) \, dx \] ### Step 3: Split the Integral Now we can split the integral into three parts: \[ I = \frac{1}{2} \int e^x \, dx - \frac{1}{2} \int e^x \cos(2x) \, dx + \int e^x \sin(2x) \, dx \] ### Step 4: Evaluate Each Integral 1. The first integral: \[ \frac{1}{2} \int e^x \, dx = \frac{1}{2} e^x + C_1 \] 2. For the second integral \( \int e^x \cos(2x) \, dx \), we can use integration by parts or a known result: \[ \int e^x \cos(2x) \, dx = \frac{e^x}{5} (2 \cos(2x) + \sin(2x)) + C_2 \] 3. For the third integral \( \int e^x \sin(2x) \, dx \), we again use integration by parts or a known result: \[ \int e^x \sin(2x) \, dx = \frac{e^x}{5} (\sin(2x) - 2 \cos(2x)) + C_3 \] ### Step 5: Combine the Results Now we combine all the results: \[ I = \frac{1}{2} e^x - \frac{1}{2} \left( \frac{e^x}{5} (2 \cos(2x) + \sin(2x)) \right) + \left( \frac{e^x}{5} (\sin(2x) - 2 \cos(2x)) \right) + C \] ### Step 6: Simplify the Expression Combining the terms will give us the final result: \[ I = \frac{1}{2} e^x - \frac{1}{10} e^x (2 \cos(2x) + \sin(2x)) + \frac{1}{5} e^x (\sin(2x) - 2 \cos(2x)) + C \] ### Final Answer Thus, the final answer is: \[ I = e^x \left( \frac{1}{2} - \frac{1}{10} (2 \cos(2x) + \sin(2x)) + \frac{1}{5} (\sin(2x) - 2 \cos(2x)) \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(x) sin x dx .

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

int e^(" sin x "). " sin 2x dx "

int e^x sin(e^x) dx

int sin x cos(cos x)dx

int (cos x)/(sin x+cos x) dx

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

int cos^(3) x. sin x dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to