Home
Class 12
MATHS
int e^x (logsin x + cot x)dx...

`int e^x (logsin x + cot x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (\log \sin x + \cot x) \, dx \), we can use the integration technique involving the identity for integrating functions of the form \( e^x f(x) + f'(x) \). ### Step-by-Step Solution: 1. **Identify the Integral**: \[ I = \int e^x (\log \sin x + \cot x) \, dx \] 2. **Recognize the Structure**: We can express the integral in a form that allows us to apply the integration identity: \[ \int e^x f(x) + f'(x) \, dx = e^x f(x) + C \] Here, we will consider \( f(x) = \log \sin x \). 3. **Differentiate \( f(x) \)**: We need to find \( f'(x) \): \[ f(x) = \log \sin x \] Using the chain rule, we differentiate: \[ f'(x) = \frac{1}{\sin x} \cdot \cos x = \cot x \] 4. **Apply the Identity**: Since we have \( f(x) = \log \sin x \) and \( f'(x) = \cot x \), we can apply the integration identity: \[ I = e^x f(x) + C = e^x \log \sin x + C \] 5. **Final Result**: Thus, the integral evaluates to: \[ \int e^x (\log \sin x + \cot x) \, dx = e^x \log \sin x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(x) sin x dx .

int e^x sin(e^x) dx

int cot^-1 x dx

int e^x sec e^x dx

int cot^2 x dx

int cot^3 x dx

int cot^6 x dx

int(1)/(cos x . cot x ) dx

int cot x log ( sin x ) dx is equal to

int ( x + cotx ) cot^2x dx