Home
Class 12
MATHS
Evaluate: inte^x\ ((sinxcosx-1)/(sin^2x)...

Evaluate: `inte^x\ ((sinxcosx-1)/(sin^2x))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int e^x \frac{\sin x \cos x - 1}{\sin^2 x} \, dx, \] we can follow these steps: ### Step 1: Separate the terms in the integral We can rewrite the integral by separating the numerator: \[ I = \int e^x \left( \frac{\sin x \cos x}{\sin^2 x} - \frac{1}{\sin^2 x} \right) \, dx. \] ### Step 2: Simplify the fractions Now, we can simplify the fractions: \[ I = \int e^x \left( \frac{\cos x}{\sin x} - \frac{1}{\sin^2 x} \right) \, dx. \] This can be rewritten as: \[ I = \int e^x \left( \cot x - \csc^2 x \right) \, dx. \] ### Step 3: Use the identity for integration We can use the integration identity: \[ \int e^x f(x) + e^x f'(x) \, dx = e^x f(x) + C, \] where \( f(x) = \cot x \) and \( f'(x) = -\csc^2 x \). ### Step 4: Apply the identity From the identity, we can apply it to our integral: \[ I = e^x \cot x + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = e^x \cot x + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x\ ((1+sinxcosx)/(cos^2x))\ dx

Evaluate: inte^(2x)\ ((1+sin2x)/(1+cos2x))\ dx

Evaluate: inte^(2x)sinxcosx\ dx

Evaluate: int1/(sinxcosx)\ dx

Evaluate: inte^(2x)+sin2x\ dx

Evaluate: inte^(2x)+sin2x\ dx

Evaluate: int1/(sin^4xcos^2x)dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate : int e^(-2x) sin x dx