Home
Class 12
MATHS
int (x-2)/(x^(3)).e^(x) dx...

`int (x-2)/(x^(3)).e^(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x - 2}{x^3} e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ I = \int \frac{x - 2}{x^3} e^x \, dx = \int \left( \frac{x}{x^3} - \frac{2}{x^3} \right) e^x \, dx = \int \left( \frac{1}{x^2} - \frac{2}{x^3} \right) e^x \, dx \] ### Step 2: Split the Integral Now we can split the integral into two separate integrals: \[ I = \int \frac{1}{x^2} e^x \, dx - 2 \int \frac{1}{x^3} e^x \, dx \] ### Step 3: Apply Integration by Parts For the integral \( \int \frac{1}{x^2} e^x \, dx \), we can use integration by parts. Let: - \( u = \frac{1}{x^2} \) (then \( du = -\frac{2}{x^3} \, dx \)) - \( dv = e^x \, dx \) (then \( v = e^x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \frac{1}{x^2} e^x \, dx = \frac{1}{x^2} e^x - \int e^x \left(-\frac{2}{x^3}\right) \, dx \] This simplifies to: \[ \int \frac{1}{x^2} e^x \, dx = \frac{1}{x^2} e^x + 2 \int \frac{1}{x^3} e^x \, dx \] ### Step 4: Substitute Back Now we can substitute this back into our original integral: \[ I = \left( \frac{1}{x^2} e^x + 2 \int \frac{1}{x^3} e^x \, dx \right) - 2 \int \frac{1}{x^3} e^x \, dx \] This gives us: \[ I = \frac{1}{x^2} e^x + 2 \int \frac{1}{x^3} e^x \, dx - 2 \int \frac{1}{x^3} e^x \, dx \] The \( 2 \int \frac{1}{x^3} e^x \, dx \) terms cancel out: \[ I = \frac{1}{x^2} e^x \] ### Step 5: Final Result Thus, the final result of the integral is: \[ I = \frac{e^x}{x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int((3x-2)/(x)+e^(x)) dx

int x^(2)e^(x)dx

int ((x+2)/(x+4))^2 e^x dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

int e^(2x)dx

int (e^x +2x)/(e^x+x^2) dx

int((log _(e)x)^(3))/(x)dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

int(x)/(e^(x^(2)))dx