Home
Class 12
MATHS
int e^(2x) " (tan x+1)"^(2) dx...

`int e^(2x) " (tan x+1)"^(2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{2x} (\tan x + 1)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand First, we expand the expression \( (\tan x + 1)^2 \): \[ (\tan x + 1)^2 = \tan^2 x + 2\tan x + 1 \] Thus, the integral becomes: \[ \int e^{2x} (\tan^2 x + 2\tan x + 1) \, dx \] ### Step 2: Rewrite using trigonometric identity Using the identity \( \tan^2 x + 1 = \sec^2 x \), we can rewrite the integral: \[ \int e^{2x} \sec^2 x \, dx + 2\int e^{2x} \tan x \, dx + \int e^{2x} \, dx \] ### Step 3: Solve each integral separately Now we will solve each integral separately. 1. **Integral of \( e^{2x} \sec^2 x \)**: Let \( I_1 = \int e^{2x} \sec^2 x \, dx \). 2. **Integral of \( e^{2x} \tan x \)**: Let \( I_2 = \int e^{2x} \tan x \, dx \). 3. **Integral of \( e^{2x} \)**: \[ I_3 = \int e^{2x} \, dx = \frac{e^{2x}}{2} + C \] ### Step 4: Use integration by parts for \( I_2 \) For \( I_2 \), we will use integration by parts: Let \( u = \tan x \) and \( dv = e^{2x} \, dx \). Then, \( du = \sec^2 x \, dx \) and \( v = \frac{e^{2x}}{2} \). Using integration by parts: \[ I_2 = \int u \, dv = uv - \int v \, du \] \[ I_2 = \tan x \cdot \frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} \sec^2 x \, dx \] This gives us: \[ I_2 = \frac{e^{2x} \tan x}{2} - \frac{1}{2} I_1 \] ### Step 5: Substitute back into the integral Now we substitute \( I_1 \) and \( I_2 \) back into our original integral: \[ \int e^{2x} (\tan^2 x + 2\tan x + 1) \, dx = I_1 + 2\left(\frac{e^{2x} \tan x}{2} - \frac{1}{2} I_1\right) + I_3 \] This simplifies to: \[ I_1 + e^{2x} \tan x - I_1 + \frac{e^{2x}}{2} \] Thus, we have: \[ e^{2x} \tan x + \frac{e^{2x}}{2} + C \] ### Final Answer The final result of the integral is: \[ \int e^{2x} (\tan x + 1)^2 \, dx = e^{2x} \tan x + \frac{e^{2x}}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int e^(x) (1 + tan x + tan^(2)x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

If int e ^(x) ((2tan x)/(1+tan x)+ cosec ^(2)(x+(pi)/(4)))dx =e ^(x). g(x)+k, then g ((5pi)/(4))=

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

int(tan x + cos x)^(2) dx

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int (int e ^(x) (ln x +(2 )/(x) -(1)/(x ^(2)))dx )dx =

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx