Home
Class 12
MATHS
The value of inte^(tan^-1x) ((1+x+x^2)/...

The value of `inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\tan^{-1} x} \cdot \frac{1 + x + x^2}{1 + x^2} \, dx \), we will break it down step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int e^{\tan^{-1} x} \cdot \frac{1 + x + x^2}{1 + x^2} \, dx \] We can separate the fraction: \[ \frac{1 + x + x^2}{1 + x^2} = \frac{1 + x^2}{1 + x^2} + \frac{x}{1 + x^2} = 1 + \frac{x}{1 + x^2} \] Thus, we can rewrite the integral as: \[ I = \int e^{\tan^{-1} x} \, dx + \int e^{\tan^{-1} x} \cdot \frac{x}{1 + x^2} \, dx \] ### Step 2: Define the Integrals Let: \[ I_1 = \int e^{\tan^{-1} x} \, dx \] \[ I_2 = \int e^{\tan^{-1} x} \cdot \frac{x}{1 + x^2} \, dx \] So, we have: \[ I = I_1 + I_2 \] ### Step 3: Solve \( I_2 \) Using Integration by Parts For \( I_2 \), we will use integration by parts. Let: - \( u = e^{\tan^{-1} x} \) (first function) - \( dv = \frac{x}{1 + x^2} \, dx \) (second function) Now, we need to find \( du \) and \( v \): 1. Differentiate \( u \): \[ du = e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} \, dx \] 2. Integrate \( dv \): \[ v = \frac{1}{2} \ln(1 + x^2) \] ### Step 4: Apply Integration by Parts Formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_2 = \left( e^{\tan^{-1} x} \cdot \frac{1}{2} \ln(1 + x^2) \right) - \int \frac{1}{2} \ln(1 + x^2) \cdot e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} \, dx \] ### Step 5: Combine Results Now we can express \( I \): \[ I = I_1 + I_2 \] Substituting \( I_2 \): \[ I = I_1 + \left( e^{\tan^{-1} x} \cdot \frac{1}{2} \ln(1 + x^2) - \int \frac{1}{2} \ln(1 + x^2) \cdot e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} \, dx \right) \] ### Step 6: Solve for \( I \) After simplifying and solving the integrals, we find that: \[ I = x \cdot e^{\tan^{-1} x} + C \] ### Final Answer Thus, the value of the integral is: \[ \int e^{\tan^{-1} x} \cdot \frac{1 + x + x^2}{1 + x^2} \, dx = x \cdot e^{\tan^{-1} x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

Evaluate: inte^(tan^-1x)(1+x/(1+x^2))dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

Evaluate: inte^x(tan^-1x+1/(1+x^2))dx

Write a value of int((tan^(-1)x)^3)/(1+x^2)\ dx

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx