Home
Class 12
MATHS
Find int[log(logx)+1/((logx)^2)]dx...

Find `int[log(logx)+1/((logx)^2)]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx \), we will use integration by parts. Let's break it down step by step. ### Step 1: Identify the parts for integration by parts We will let: - \( u = \log(\log x) \) - \( dv = dx \) Now we need to find \( du \) and \( v \): - \( du = \frac{1}{\log x} \cdot \frac{1}{x} \, dx = \frac{1}{x \log x} \, dx \) - \( v = x \) ### Step 2: Apply the integration by parts formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values into the formula: \[ \int \log(\log x) \, dx = x \log(\log x) - \int x \cdot \frac{1}{x \log x} \, dx \] This simplifies to: \[ \int \log(\log x) \, dx = x \log(\log x) - \int \frac{1}{\log x} \, dx \] ### Step 3: Solve the remaining integral Now we need to solve \( \int \frac{1}{\log x} \, dx \). We will again use integration by parts: Let: - \( u = \frac{1}{\log x} \) - \( dv = dx \) Calculating \( du \) and \( v \): - \( du = -\frac{1}{(\log x)^2} \cdot \frac{1}{x} \, dx = -\frac{1}{x (\log x)^2} \, dx \) - \( v = x \) Now applying the integration by parts formula again: \[ \int \frac{1}{\log x} \, dx = x \cdot \frac{1}{\log x} - \int x \left(-\frac{1}{x (\log x)^2}\right) \, dx \] This simplifies to: \[ \int \frac{1}{\log x} \, dx = \frac{x}{\log x} + \int \frac{1}{(\log x)^2} \, dx \] ### Step 4: Substitute back into the original integral Now we substitute back into our expression for \( \int \log(\log x) \, dx \): \[ \int \log(\log x) \, dx = x \log(\log x) - \left( \frac{x}{\log x} + \int \frac{1}{(\log x)^2} \, dx \right) \] This gives us: \[ \int \log(\log x) \, dx = x \log(\log x) - \frac{x}{\log x} - \int \frac{1}{(\log x)^2} \, dx \] ### Step 5: Combine everything Now we can combine everything to find the final result: \[ \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx = x \log(\log x) - \frac{x}{\log x} + C \] where \( C \) is the constant of integration. ### Final Answer: \[ \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx = x \log(\log x) - \frac{x}{\log x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

"F i n d"int[log(logx)+1/((logx)^2)]dx

int(logx/(1+logx)^2)dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(logx)/((1+logx)^2)dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evalaute: int((logx-1)/(1+(logx)^2))^2dx

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

Evaluate int(logx)/((1+logx)^(2))dx .