Home
Class 12
MATHS
Evaluate : int(1)/(5+4x+x^(2))dx...

`Evaluate : int(1)/(5+4x+x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{1}{5 + 4x + x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator First, we need to rewrite the quadratic expression in the denominator. We can complete the square for the expression \( x^2 + 4x + 5 \). \[ x^2 + 4x + 5 = (x^2 + 4x + 4) + 1 = (x + 2)^2 + 1 \] ### Step 2: Substitute the Completed Square into the Integral Now we can substitute this back into the integral: \[ I = \int \frac{1}{(x + 2)^2 + 1} \, dx \] ### Step 3: Use the Standard Integral Formula The integral we have now resembles the standard integral form: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a^2 = 1 \) so \( a = 1 \) and \( x \) is replaced by \( x + 2 \). ### Step 4: Apply the Formula Using the standard formula, we get: \[ I = \int \frac{1}{(x + 2)^2 + 1} \, dx = \tan^{-1}(x + 2) + C \] ### Final Answer Thus, the evaluated integral is: \[ I = \tan^{-1}(x + 2) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (1)/(4-x^(2)) dx

Evaluate : int (1)/(4+x^(2)) " dx "

Evaluate : int(1)/(x^(2)+4x+13)dx .

int(1)/(x^(2)+4x+5)dx

Evaluate : int(dx)/(sqrt(5-4x^(2))

Evaluate: int(x+1)/(x^2+4x+5)\ dx

Evaluate: int(x^4+1)/(x^2+1)dx

Evaluate: int1/(1-x-4x^2)\ dx

Evaluate: inte^(2x)/(1+e^(4x))dx

Evaluate: int1/(x(x-2)(x-4))\ dx