Home
Class 12
MATHS
int(1)/(2x^(2)+5x+3)dx...

`int(1)/(2x^(2)+5x+3)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{2x^2 + 5x + 3} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \frac{1}{2x^2 + 5x + 3} \, dx \). ### Step 2: Factor Out the Coefficient of \( x^2 \) We can factor out \( \frac{1}{2} \) from the denominator: \[ I = \frac{1}{2} \int \frac{1}{x^2 + \frac{5}{2}x + \frac{3}{2}} \, dx \] ### Step 3: Complete the Square Next, we will complete the square for the quadratic expression in the denominator: \[ x^2 + \frac{5}{2}x + \frac{3}{2} \] To complete the square, we take half of the coefficient of \( x \) (which is \( \frac{5}{2} \)), square it, and adjust the expression: \[ \left(\frac{5}{4}\right)^2 = \frac{25}{16} \] So we rewrite the quadratic: \[ x^2 + \frac{5}{2}x + \frac{25}{16} - \frac{25}{16} + \frac{3}{2} = \left(x + \frac{5}{4}\right)^2 - \frac{25}{16} + \frac{24}{16} = \left(x + \frac{5}{4}\right)^2 - \frac{1}{16} \] ### Step 4: Substitute Back into the Integral Now substitute this back into the integral: \[ I = \frac{1}{2} \int \frac{1}{\left(x + \frac{5}{4}\right)^2 - \left(\frac{1}{4}\right)^2} \, dx \] ### Step 5: Use the Formula for Integrating Rational Functions We can use the formula for the integral of the form \( \int \frac{1}{u^2 - a^2} \, du = \frac{1}{2a} \ln \left| \frac{u-a}{u+a} \right| + C \): Here, \( u = x + \frac{5}{4} \) and \( a = \frac{1}{4} \): \[ I = \frac{1}{2} \cdot \frac{1}{2 \cdot \frac{1}{4}} \ln \left| \frac{x + \frac{5}{4} - \frac{1}{4}}{x + \frac{5}{4} + \frac{1}{4}} \right| + C \] This simplifies to: \[ I = \frac{1}{2} \cdot 2 \ln \left| \frac{x + 1}{2x + 3} \right| + C \] ### Step 6: Final Simplification Thus, we have: \[ I = \ln \left| \frac{x + 1}{2x + 3} \right| + C \] ### Final Answer The final result of the integral is: \[ \int \frac{1}{2x^2 + 5x + 3} \, dx = \ln \left| \frac{x + 1}{2x + 3} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(3x+1)/(2x^(2)+x-1)dx

5. int(1)/(3x^(2)+2x+1)dx

int(2x+1)/(x^(2)+4x-5)dx

Evaluate: int(2x+1)/(x^2+x+3)dx

Find the following integrals. 1. int 3x^(7)dx 2. int 4 sqrt(x)dx 3. int(dx)/(sqrt(x)) 4. int(x^(3)-5x^(2)+7x-11)dx 5. int 3 xdx 6. int 5x^(2)dx 7. int(1)/(2)x^(3)dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

int (x+1)/(2x^2+3x+4) dx

int(2x+1)/((x+2)(x-3))dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx