Home
Class 12
MATHS
int(4x-3)/(3x^2+2x-5)dx...

`int(4x-3)/(3x^2+2x-5)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{4x - 3}{3x^2 + 2x - 5} \, dx\), we can use the method of partial fractions and integration techniques. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \( I = \int \frac{4x - 3}{3x^2 + 2x - 5} \, dx \). ### Step 2: Rewrite the numerator We can express the numerator \(4x - 3\) as a linear combination of the derivative of the denominator. We know that the derivative of the denominator \(3x^2 + 2x - 5\) is \(6x + 2\). We can write: \[ 4x - 3 = A(6x + 2) + B \] for some constants \(A\) and \(B\). ### Step 3: Determine coefficients Expanding the equation gives: \[ 4x - 3 = (6A)x + (2A + B) \] Now, we can equate coefficients: 1. For \(x\): \(6A = 4\) \(\Rightarrow A = \frac{2}{3}\) 2. For the constant term: \(2A + B = -3\) Substituting \(A\) into the second equation: \[ 2 \cdot \frac{2}{3} + B = -3 \Rightarrow \frac{4}{3} + B = -3 \Rightarrow B = -3 - \frac{4}{3} = -\frac{13}{3} \] ### Step 4: Rewrite the integral Now we can rewrite the integral: \[ I = \int \left( \frac{2}{3} \cdot \frac{6x + 2}{3x^2 + 2x - 5} - \frac{13}{3} \cdot \frac{1}{3x^2 + 2x - 5} \right) \, dx \] This separates into two integrals: \[ I = \frac{2}{3} \int \frac{6x + 2}{3x^2 + 2x - 5} \, dx - \frac{13}{3} \int \frac{1}{3x^2 + 2x - 5} \, dx \] ### Step 5: Solve the first integral Using the formula \(\int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C\): Let \(f(x) = 3x^2 + 2x - 5\), then \(f'(x) = 6x + 2\): \[ \int \frac{6x + 2}{3x^2 + 2x - 5} \, dx = \ln |3x^2 + 2x - 5| + C \] Thus, \[ \frac{2}{3} \int \frac{6x + 2}{3x^2 + 2x - 5} \, dx = \frac{2}{3} \ln |3x^2 + 2x - 5| \] ### Step 6: Solve the second integral To solve \(\int \frac{1}{3x^2 + 2x - 5} \, dx\), we complete the square: \[ 3x^2 + 2x - 5 = 3\left(x^2 + \frac{2}{3}x - \frac{5}{3}\right) \] Completing the square gives: \[ 3\left((x + \frac{1}{3})^2 - \frac{16}{9}\right) = 3(x + \frac{1}{3})^2 - \frac{16}{3} \] Thus, \[ \int \frac{1}{3x^2 + 2x - 5} \, dx = \frac{1}{\sqrt{16/3}} \tan^{-1}\left(\frac{x + \frac{1}{3}}{\sqrt{16/3}}\right) + C = \frac{3}{4} \tan^{-1}\left(\frac{3(x + \frac{1}{3})}{4}\right) \] ### Step 7: Combine results Putting everything together: \[ I = \frac{2}{3} \ln |3x^2 + 2x - 5| - \frac{13}{3} \cdot \frac{3}{4} \tan^{-1}\left(\frac{3(x + \frac{1}{3})}{4}\right) + C \] Simplifying gives: \[ I = \frac{2}{3} \ln |3x^2 + 2x - 5| - \frac{13}{4} \tan^{-1}\left(\frac{3(x + \frac{1}{3})}{4}\right) + C \] ### Final Answer \[ \int \frac{4x - 3}{3x^2 + 2x - 5} \, dx = \frac{2}{3} \ln |3x^2 + 2x - 5| - \frac{13}{4} \tan^{-1}\left(\frac{3(x + \frac{1}{3})}{4}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x-3)/(x^2+2x-4)\ dx

int (2x)/(3x+2) dx

int(2x+1)/(x^(2)+4x-5)dx

Solve int(4x^(3)+3x^(2)+2x+4)dx

5. int(1)/(3x^(2)+2x+1)dx

int((x-4)^(3))/(x^(2))dx

Find the following integrals:(i) int(x+2)/(2x^2+6x+5)dx (ii) int(x+3)/(sqrt(5-4x+x^2))dx

The values of 'a' for which int_0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

Evaluate: int(4x^4+3)/((x^2+2)(x^2+3)(x^2+4))\ dx

Evaluate: int(3-4x)/(2x^(2)-3x+1)dx