Home
Class 12
MATHS
int(3x+1)/(2x^(2)+x-1)dx...

`int(3x+1)/(2x^(2)+x-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{3x + 1}{2x^2 + x - 1} \, dx \), we will use the method of partial fractions and substitution. Let's go through the steps: ### Step 1: Factor the Denominator First, we need to factor the denominator \( 2x^2 + x - 1 \). To factor \( 2x^2 + x - 1 \), we look for two numbers that multiply to \( 2 \times -1 = -2 \) and add to \( 1 \). The numbers \( 2 \) and \( -1 \) work. Thus, we can rewrite the quadratic as: \[ 2x^2 + 2x - x - 1 = (2x^2 + 2x) + (-x - 1) = 2x(x + 1) - 1(x + 1) = (2x - 1)(x + 1) \] So, we have: \[ 2x^2 + x - 1 = (2x - 1)(x + 1) \] ### Step 2: Set Up Partial Fraction Decomposition Next, we express \( \frac{3x + 1}{(2x - 1)(x + 1)} \) as a sum of partial fractions: \[ \frac{3x + 1}{(2x - 1)(x + 1)} = \frac{A}{2x - 1} + \frac{B}{x + 1} \] Multiplying through by the denominator \( (2x - 1)(x + 1) \) gives: \[ 3x + 1 = A(x + 1) + B(2x - 1) \] ### Step 3: Solve for A and B Expanding the right side: \[ 3x + 1 = Ax + A + 2Bx - B = (A + 2B)x + (A - B) \] Now, we equate coefficients: 1. \( A + 2B = 3 \) (coefficient of \( x \)) 2. \( A - B = 1 \) (constant term) From the second equation, we can express \( A \) in terms of \( B \): \[ A = B + 1 \] Substituting into the first equation: \[ (B + 1) + 2B = 3 \implies 3B + 1 = 3 \implies 3B = 2 \implies B = \frac{2}{3} \] Now substituting \( B \) back to find \( A \): \[ A = \frac{2}{3} + 1 = \frac{5}{3} \] ### Step 4: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{3x + 1}{(2x - 1)(x + 1)} \, dx = \int \left( \frac{5/3}{2x - 1} + \frac{2/3}{x + 1} \right) \, dx \] This can be separated into two integrals: \[ = \frac{5}{3} \int \frac{1}{2x - 1} \, dx + \frac{2}{3} \int \frac{1}{x + 1} \, dx \] ### Step 5: Integrate Each Term Now we integrate each term: 1. For \( \int \frac{1}{2x - 1} \, dx \): \[ = \frac{1}{2} \ln |2x - 1| + C_1 \] 2. For \( \int \frac{1}{x + 1} \, dx \): \[ = \ln |x + 1| + C_2 \] Combining these results: \[ = \frac{5}{3} \cdot \frac{1}{2} \ln |2x - 1| + \frac{2}{3} \ln |x + 1| + C \] \[ = \frac{5}{6} \ln |2x - 1| + \frac{2}{3} \ln |x + 1| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{3x + 1}{2x^2 + x - 1} \, dx = \frac{5}{6} \ln |2x - 1| + \frac{2}{3} \ln |x + 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

5. int(1)/(3x^(2)+2x+1)dx

int(3x+1)/(2x+1)dx

Evaluate: int(x^3+x+1)/(x^2-1)\ dx

Evaluate int (3x-1)/((x-2)^(2))dx

int (x+1)/(2x^2+3x+4) dx

int(2x+1)/((x+2)(x-3))dx

int 1/(2x^2+3x+4) dx

Evaluate: int(3x^2+2x+1)/(x^2+x+1)dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

Evaluate: int(3x-1)/((x+2)^2)\ dx