Home
Class 12
MATHS
int(2x-1)/(2x^2+2x+1)dx...

`int(2x-1)/(2x^2+2x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{2x - 1}{2x^2 + 2x + 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{2x - 1}{2x^2 + 2x + 1} \, dx \] ### Step 2: Express the Numerator in Terms of the Derivative of the Denominator We notice that the numerator \( 2x - 1 \) can be expressed as a linear combination of the derivative of the denominator \( 2x^2 + 2x + 1 \). The derivative is: \[ \frac{d}{dx}(2x^2 + 2x + 1) = 4x + 2 \] We can express \( 2x - 1 \) in terms of \( 4x + 2 \): \[ 2x - 1 = A(4x + 2) + B \] where \( A \) and \( B \) are constants we need to determine. ### Step 3: Determine Constants A and B To find \( A \) and \( B \), we can compare coefficients: 1. The coefficient of \( x \): \( 4A = 2 \) implies \( A = \frac{1}{2} \). 2. The constant term: \( 2A + B = -1 \). Substituting \( A = \frac{1}{2} \): \[ 2 \cdot \frac{1}{2} + B = -1 \implies 1 + B = -1 \implies B = -2 \] ### Step 4: Substitute A and B Back into the Integral Now we can rewrite the integral: \[ I = \int \frac{\frac{1}{2}(4x + 2) - 2}{2x^2 + 2x + 1} \, dx \] This can be split into two separate integrals: \[ I = \frac{1}{2} \int \frac{4x + 2}{2x^2 + 2x + 1} \, dx - 2 \int \frac{1}{2x^2 + 2x + 1} \, dx \] ### Step 5: Evaluate the First Integral For the first integral, we can use the formula: \[ \int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C \] where \( f(x) = 2x^2 + 2x + 1 \): \[ \int \frac{4x + 2}{2x^2 + 2x + 1} \, dx = \ln |2x^2 + 2x + 1| + C \] Thus, \[ \frac{1}{2} \int \frac{4x + 2}{2x^2 + 2x + 1} \, dx = \frac{1}{2} \ln |2x^2 + 2x + 1| \] ### Step 6: Evaluate the Second Integral For the second integral, we can complete the square in the denominator: \[ 2x^2 + 2x + 1 = 2\left(x^2 + x + \frac{1}{2}\right) = 2\left((x + \frac{1}{2})^2 + \frac{1}{4}\right) \] Thus, \[ \int \frac{1}{2x^2 + 2x + 1} \, dx = \frac{1}{2} \int \frac{1}{(x + \frac{1}{2})^2 + \left(\frac{1}{2}\right)^2} \, dx \] Using the formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] we have: \[ = \frac{1}{2} \cdot \frac{1}{\frac{1}{2}} \tan^{-1}\left(\frac{2(x + \frac{1}{2})}{1}\right) = \tan^{-1}(2x + 1) \] ### Step 7: Combine the Results Putting it all together, we have: \[ I = \frac{1}{2} \ln |2x^2 + 2x + 1| - 2 \tan^{-1}(2x + 1) + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{1}{2} \ln |2x^2 + 2x + 1| - 2 \tan^{-1}(2x + 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(3x+1)/(2x^(2)+x-1)dx

int(1)/(2x^(2)-4x+1)dx

int (x)/(x^(2)+2x+1)dx

Evaluate: int(2x-1)/((x-1)^2)dx

Evaluate: int(2x+1)/(x^2+x+3)dx

int(1)/(2x^(2)+x+1)dx

5. int(1)/(3x^(2)+2x+1)dx

int(2x+1)/(x^(2)+4x-5)dx

int (x+1)/(2x^2+3x+4) dx

int(2x)/((2x+1)^2)dx