Home
Class 12
MATHS
int(1)/(sqrt(4x^(2)-x+4))dx...

`int(1)/(sqrt(4x^(2)-x+4))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sqrt{4x^2 - x + 4}} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral: \[ I = \int \frac{1}{\sqrt{4x^2 - x + 4}} \, dx \] ### Step 2: Factor out the constant from the square root We can factor out 4 from the expression under the square root: \[ I = \int \frac{1}{\sqrt{4\left(x^2 - \frac{x}{4} + 1\right)}} \, dx = \frac{1}{2} \int \frac{1}{\sqrt{x^2 - \frac{x}{4} + 1}} \, dx \] ### Step 3: Complete the square Next, we complete the square for the expression \( x^2 - \frac{x}{4} + 1 \): \[ x^2 - \frac{x}{4} + 1 = \left(x - \frac{1}{8}\right)^2 + \left(1 - \frac{1}{64}\right) = \left(x - \frac{1}{8}\right)^2 + \frac{63}{64} \] Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \int \frac{1}{\sqrt{\left(x - \frac{1}{8}\right)^2 + \left(\frac{\sqrt{63}}{8}\right)^2}} \, dx \] ### Step 4: Use the standard integral formula We can now use the standard integral formula: \[ \int \frac{1}{\sqrt{u^2 + a^2}} \, du = \ln \left| u + \sqrt{u^2 + a^2} \right| + C \] In our case, \( u = x - \frac{1}{8} \) and \( a = \frac{\sqrt{63}}{8} \). ### Step 5: Substitute into the formula Applying the formula, we get: \[ I = \frac{1}{2} \ln \left| x - \frac{1}{8} + \frac{\sqrt{63}}{8} \right| + \frac{1}{2} \ln \left| \sqrt{\left(x - \frac{1}{8}\right)^2 + \left(\frac{\sqrt{63}}{8}\right)^2} \right| + C \] ### Step 6: Simplify the expression We can combine the logarithmic terms: \[ I = \frac{1}{2} \ln \left| 8x - 1 + \sqrt{(8x - 1)^2 + 63} \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{2} \ln \left| 8x - 1 + \sqrt{(8x - 1)^2 + 63} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(3-(x^(2))/(4))dx)

Evaluate: (i) int(a^x)/(sqrt(1-a^(2x)))\ dx (ii) int(2x)/(sqrt(1-x^2-x^4))\ dx

(i) int(dx)/(x sqrt(4x^(2)-9))

Evaluate the inetgral, int(4x+1)/(sqrt(x^(2)+3x+2))dx

Evaluate: int1/(sqrt(4x^2-9))\ dx

Evaluate: int1/(sqrt(4x^2-9))\ dx

Evaluate: int1/(sqrt(4x^2-9))\ dx

4. int1/sqrt(4x-x^2)dx

Evaluate: int1/(sqrt(x^2-4x+2))\ dx

int(1dx)/((x-2)sqrt(x^(2)-4x+3)