Home
Class 12
MATHS
int(1)/(sqrt(2+x-3x^2))dx...

`int(1)/(sqrt(2+x-3x^2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{2 + x - 3x^2}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator We start with the expression under the square root: \[ \sqrt{2 + x - 3x^2} \] To make it easier to work with, we can factor out \(-3\) from the quadratic term: \[ \sqrt{-3\left(x^2 - \frac{1}{3}x - \frac{2}{3}\right)} \] This gives us: \[ \sqrt{-3} \sqrt{\frac{1}{3} - x^2 + \frac{1}{3}x} \] Now, we can multiply and divide by \(\sqrt{3}\): \[ \sqrt{3} \sqrt{\frac{2}{3} + \frac{1}{3}x - x^2} \] ### Step 2: Completing the Square Next, we will complete the square for the expression \( -3x^2 + x + 2 \): \[ -3\left(x^2 - \frac{1}{3}x - \frac{2}{3}\right) \] The term can be rewritten as: \[ -3\left(\left(x - \frac{1}{6}\right)^2 - \frac{25}{36}\right) \] This simplifies to: \[ -\frac{3}{36}\left(36\left(x - \frac{1}{6}\right)^2 - 25\right) \] Thus, the expression becomes: \[ -\frac{1}{12}\left(25 - 36\left(x - \frac{1}{6}\right)^2\right) \] ### Step 3: Substitute and Simplify Now, substituting back into the integral: \[ \int \frac{1}{\sqrt{-\frac{1}{12}\left(25 - 36\left(x - \frac{1}{6}\right)^2\right)}} \, dx \] This can be simplified to: \[ \int \frac{\sqrt{12}}{\sqrt{25 - 36\left(x - \frac{1}{6}\right)^2}} \, dx \] ### Step 4: Use the Standard Integral Formula We recognize this as a standard form of the integral: \[ \int \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1}\left(\frac{u}{a}\right) + C \] where \( a = 5 \) and \( u = 6\left(x - \frac{1}{6}\right) \). ### Step 5: Final Integration Thus, we have: \[ \frac{1}{\sqrt{3}} \sin^{-1}\left(\frac{6\left(x - \frac{1}{6}\right)}{5}\right) + C \] Finally, simplifying gives us: \[ \frac{1}{\sqrt{3}} \sin^{-1}\left(\frac{6x - 1}{5}\right) + C \] ### Final Answer The final result of the integration is: \[ \int \frac{1}{\sqrt{2 + x - 3x^2}} \, dx = \frac{1}{\sqrt{3}} \sin^{-1}\left(\frac{6x - 1}{5}\right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(3x+1)/(sqrt(5-2x-x^2))dx

Evaluate int(x+1)/(sqrt(2x+3))dx

Evaluate: int1/(sqrt(3-2x-x^2))\ dx

int(1)/(sqrt(2x^(2)+3x-2))dx

Evaluate the following integrals : (i) int(1)/((x+1)sqrt(2x-3))dx (ii) int(1)/((x+1)sqrt(x^(2)+x-1))dx (iii) int(1)/((x^(2)+3x+3)sqrt(x+1))dx (iv) int(1)/((x^(2)-3x+2)sqrt(x^(2)-2))dx

int(dx)/sqrt(2-3x-x^(2))=

Evaluate: int1/(sqrt(2x^2+3x-2))\ dx

Evaluate: int1/(sqrt(8+3x-x^2))\ dx

int sqrt(2-3x^(2))dx

int(x)/(sqrt(1+x^(2)))dx