Home
Class 12
MATHS
int(1)/(sqrt(1+x-x^(2)))dx...

`int(1)/(sqrt(1+x-x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{1 + x - x^2}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator We start with the expression in the denominator: \[ 1 + x - x^2 \] We can rearrange this as: \[ 1 - (x^2 - x) = 1 - (x^2 - x + \frac{1}{4} - \frac{1}{4}) = 1 - \left( (x - \frac{1}{2})^2 - \frac{1}{4} \right) \] This simplifies to: \[ 1 - (x - \frac{1}{2})^2 + \frac{1}{4} = \frac{5}{4} - (x - \frac{1}{2})^2 \] ### Step 2: Substitute into the Integral Now we can rewrite the integral: \[ \int \frac{1}{\sqrt{1 + x - x^2}} \, dx = \int \frac{1}{\sqrt{\frac{5}{4} - (x - \frac{1}{2})^2}} \, dx \] ### Step 3: Apply the Formula for the Integral We can now use the formula for the integral: \[ \int \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1} \left( \frac{u}{a} \right) + C \] In our case, \( a = \frac{\sqrt{5}}{2} \) and \( u = x - \frac{1}{2} \). ### Step 4: Substitute Values into the Formula Thus, we have: \[ \int \frac{1}{\sqrt{\frac{5}{4} - (x - \frac{1}{2})^2}} \, dx = \sin^{-1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{5}}{2}} \right) + C \] ### Step 5: Simplify the Expression We can simplify the argument of the sine inverse: \[ \sin^{-1} \left( \frac{2(x - \frac{1}{2})}{\sqrt{5}} \right) + C = \sin^{-1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1}{\sqrt{1 + x - x^2}} \, dx = \sin^{-1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

Find int(xsin^(-1)x)/(sqrt(1-x^2))dx

Find : int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int(xsin^(-1)x)/sqrt(1-x^(2))dx

Evaluate: int(1+x^2)/(sqrt(1-x^2))\ dx

Evaluate: int(x-1)sqrt(1+x+x^(2)) dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))\ dx