Home
Class 12
MATHS
int(x+1)/(sqrt(2x^(2)+x-3))dx...

`int(x+1)/(sqrt(2x^(2)+x-3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x + 1}{\sqrt{2x^2 + x - 3}} \, dx, \] we can start by rewriting the numerator \(x + 1\) in terms of the derivative of the denominator \(2x^2 + x - 3\). ### Step 1: Rewrite the Numerator We want to express \(x + 1\) as a linear combination of the derivative of the denominator. The derivative of \(2x^2 + x - 3\) is \[ \frac{d}{dx}(2x^2 + x - 3) = 4x + 1. \] We can write: \[ x + 1 = a(4x + 1) + b, \] where \(a\) and \(b\) are constants we need to determine. ### Step 2: Set Up the Equation Expanding the right-hand side gives: \[ x + 1 = (4a)x + (a + b). \] ### Step 3: Compare Coefficients Now, we compare coefficients of \(x\) and the constant term: 1. For \(x\): \(4a = 1 \implies a = \frac{1}{4}\) 2. For the constant: \(a + b = 1\) Substituting \(a = \frac{1}{4}\) into the second equation: \[ \frac{1}{4} + b = 1 \implies b = 1 - \frac{1}{4} = \frac{3}{4}. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral \(I\): \[ I = \int \frac{\frac{1}{4}(4x + 1) + \frac{3}{4}}{\sqrt{2x^2 + x - 3}} \, dx. \] This can be separated into two integrals: \[ I = \frac{1}{4} \int \frac{4x + 1}{\sqrt{2x^2 + x - 3}} \, dx + \frac{3}{4} \int \frac{1}{\sqrt{2x^2 + x - 3}} \, dx. \] ### Step 5: Define the Integrals Let \[ I_1 = \int \frac{4x + 1}{\sqrt{2x^2 + x - 3}} \, dx, \] and \[ I_2 = \int \frac{1}{\sqrt{2x^2 + x - 3}} \, dx. \] Thus, we have: \[ I = \frac{1}{4} I_1 + \frac{3}{4} I_2. \] ### Step 6: Solve \(I_1\) For \(I_1\), we can use the substitution \(t = 2x^2 + x - 3\), then \(dt = (4x + 1)dx\). This gives: \[ I_1 = \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C. \] Substituting back gives: \[ I_1 = 2\sqrt{2x^2 + x - 3}. \] ### Step 7: Solve \(I_2\) For \(I_2\), we can also use the same substitution \(t = 2x^2 + x - 3\): \[ I_2 = \int \frac{1}{\sqrt{t}} dt = 2\sqrt{t} + C. \] Substituting back gives: \[ I_2 = 2\sqrt{2x^2 + x - 3}. \] ### Step 8: Combine Results Now substituting \(I_1\) and \(I_2\) back into the expression for \(I\): \[ I = \frac{1}{4}(2\sqrt{2x^2 + x - 3}) + \frac{3}{4}(2\sqrt{2x^2 + x - 3}) = \frac{5}{4}\sqrt{2x^2 + x - 3} + C. \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{5}{4}\sqrt{2x^2 + x - 3} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (2x+1)/(sqrt(2x^(2)+x-3))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(1)/(sqrt(x^(2)+3x+1))dx

int(3x-1)/(sqrt(x^(2)+9))dx

int (x^(2) +1)/(sqrt(x^(2)+3))dx

int(1)/(sqrt(2+x-3x^2))dx

Evaluate int(x+1)/(sqrt(2x+3))dx