Home
Class 12
MATHS
int(2x+5)/(sqrt(x^(2)+3x+1))dx...

`int(2x+5)/(sqrt(x^(2)+3x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{2x + 5}{\sqrt{x^2 + 3x + 1}} \, dx, \] we can break it down into simpler parts. Let's follow the steps outlined in the video transcript. ### Step 1: Split the Integral We can rewrite the integral by splitting the constant \(5\) into \(3 + 2\): \[ I = \int \frac{2x + 3 + 2}{\sqrt{x^2 + 3x + 1}} \, dx = \int \frac{2x + 3}{\sqrt{x^2 + 3x + 1}} \, dx + \int \frac{2}{\sqrt{x^2 + 3x + 1}} \, dx. \] Let’s denote the first integral as \(I_1\) and the second as \(I_2\): \[ I = I_1 + I_2, \] where \[ I_1 = \int \frac{2x + 3}{\sqrt{x^2 + 3x + 1}} \, dx, \] and \[ I_2 = \int \frac{2}{\sqrt{x^2 + 3x + 1}} \, dx. \] ### Step 2: Solve \(I_1\) For \(I_1\), we can use substitution. Let \[ t = x^2 + 3x + 1. \] Then, differentiating gives: \[ dt = (2x + 3) \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x + 3}. \] Substituting into \(I_1\): \[ I_1 = \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C_1 = 2\sqrt{x^2 + 3x + 1} + C_1. \] ### Step 3: Solve \(I_2\) Next, we simplify \(I_2\). We need to complete the square for the expression \(x^2 + 3x + 1\): \[ x^2 + 3x + 1 = \left(x + \frac{3}{2}\right)^2 - \frac{5}{4}. \] Thus, \[ I_2 = 2 \int \frac{1}{\sqrt{\left(x + \frac{3}{2}\right)^2 - \left(\frac{\sqrt{5}}{2}\right)^2}} \, dx. \] Using the formula for the integral of the form \(\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln |x + \sqrt{x^2 - a^2}| + C\), we have: \[ I_2 = 2 \ln \left| x + \frac{3}{2} + \sqrt{\left(x + \frac{3}{2}\right)^2 - \frac{5}{4}} \right| + C_2. \] ### Step 4: Combine Results Now, we combine \(I_1\) and \(I_2\): \[ I = 2\sqrt{x^2 + 3x + 1} + 2 \ln \left| x + \frac{3}{2} + \sqrt{\left(x + \frac{3}{2}\right)^2 - \frac{5}{4}} \right| + C, \] where \(C = C_1 + C_2\). ### Final Answer Thus, the final result for the integral is: \[ I = 2\sqrt{x^2 + 3x + 1} + 2 \ln \left| x + \frac{3}{2} + \sqrt{\left(x + \frac{3}{2}\right)^2 - \frac{5}{4}} \right| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(1)/(sqrt(x^(2)+3x+1))dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(6x-5)/(sqrt(3x^2-5x+1))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(dx)/(sqrt(1-5x^(2)))

int (x^(2) +1)/(sqrt(x^(2)+3))dx

Evaluate: int(4x+3)/(sqrt(2x^2+3x+1))dx