Home
Class 12
MATHS
int(x)/(sqrt(x^(2)+x+1))dx...

`int(x)/(sqrt(x^(2)+x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x}{\sqrt{x^2 + x + 1}} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the integrand We want to express \( x \) in terms of the derivative of \( x^2 + x + 1 \). Let's assume: \[ x = a \cdot \frac{d}{dx}(x^2 + x + 1) + b \] Calculating the derivative: \[ \frac{d}{dx}(x^2 + x + 1) = 2x + 1 \] Thus, we can write: \[ x = a(2x + 1) + b \] ### Step 2: Compare coefficients Now, we compare coefficients from both sides: - Coefficient of \( x \): \( 1 = 2a \) → \( a = \frac{1}{2} \) - Constant term: \( 0 = a + b \) → \( b = -\frac{1}{2} \) ### Step 3: Substitute back into the integral Now substituting \( a \) and \( b \) back, we have: \[ x = \frac{1}{2}(2x + 1) - \frac{1}{2} \] Thus, we can rewrite the integral: \[ \int \frac{x}{\sqrt{x^2 + x + 1}} \, dx = \int \frac{\frac{1}{2}(2x + 1) - \frac{1}{2}}{\sqrt{x^2 + x + 1}} \, dx \] This simplifies to: \[ \frac{1}{2} \int \frac{2x + 1}{\sqrt{x^2 + x + 1}} \, dx - \frac{1}{2} \int \frac{1}{\sqrt{x^2 + x + 1}} \, dx \] ### Step 4: Change of variable Let \( t = x^2 + x + 1 \). Then, the derivative is: \[ dt = (2x + 1) \, dx \implies dx = \frac{dt}{2x + 1} \] Substituting this into the first integral: \[ \frac{1}{2} \int \frac{dt}{\sqrt{t}} = \frac{1}{2} \cdot 2\sqrt{t} = \sqrt{t} = \sqrt{x^2 + x + 1} \] ### Step 5: Solve the second integral For the second integral: \[ -\frac{1}{2} \int \frac{1}{\sqrt{x^2 + x + 1}} \, dx \] To solve this, we can complete the square: \[ x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \] Thus: \[ -\frac{1}{2} \int \frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}} \, dx \] Using the formula for the integral of \( \frac{1}{\sqrt{x^2 + a^2}} \): \[ = -\frac{1}{2} \log\left(x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right) + C \] ### Final Result Combining both parts, we have: \[ \int \frac{x}{\sqrt{x^2 + x + 1}} \, dx = \sqrt{x^2 + x + 1} - \frac{1}{2} \log\left(x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

Evaluate: int(2x+1)/(sqrt(x^2+2x-1))dx

Evaluate: int(2x+3)/(sqrt(x^2+4x+1))dx

Evaluate: int(2x+3)/(sqrt(x^2+4x+1))dx

int(2x+5)/(sqrt(x^(2)+3x+1))dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

Evaluate: int(x+2)/(sqrt(x^2+2x-1))\ dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx