Home
Class 12
MATHS
int(x+2)sqrt(x^(2)+x)dx...

`int(x+2)sqrt(x^(2)+x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x + 2) \sqrt{x^2 + x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int (x + 2) \sqrt{x^2 + x} \, dx \). ### Step 2: Express \( x + 2 \) in terms of the derivative of \( x^2 + x \) Notice that \( \frac{d}{dx}(x^2 + x) = 2x + 1 \). We can express \( x + 2 \) as: \[ x + 2 = \frac{3}{2}(2x + 1) - \frac{1}{2} \] This means we can rewrite the integral as: \[ I = \int \left( \frac{3}{2}(2x + 1) - \frac{1}{2} \right) \sqrt{x^2 + x} \, dx \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ I = \frac{3}{2} \int (2x + 1) \sqrt{x^2 + x} \, dx - \frac{1}{2} \int \sqrt{x^2 + x} \, dx \] Let \( I_1 = \int (2x + 1) \sqrt{x^2 + x} \, dx \) and \( I_2 = \int \sqrt{x^2 + x} \, dx \). ### Step 4: Solve \( I_2 \) For \( I_2 \), we can use substitution. Let \( t = x^2 + x \), then \( dt = (2x + 1) \, dx \). Thus: \[ I_2 = \int \sqrt{t} \cdot \frac{dt}{2} = \frac{1}{2} \int t^{1/2} \, dt = \frac{1}{2} \cdot \frac{2}{3} t^{3/2} + C = \frac{1}{3} (x^2 + x)^{3/2} + C \] ### Step 5: Solve \( I_1 \) Now for \( I_1 \): \[ I_1 = \int (2x + 1) \sqrt{x^2 + x} \, dx = \int \sqrt{x^2 + x} \, dt = \int \sqrt{t} \, dt = \frac{2}{3} t^{3/2} + C = \frac{2}{3} (x^2 + x)^{3/2} + C \] ### Step 6: Combine Results Now substituting back into our expression for \( I \): \[ I = \frac{3}{2} I_1 - \frac{1}{2} I_2 \] Substituting the values of \( I_1 \) and \( I_2 \): \[ I = \frac{3}{2} \cdot \frac{2}{3} (x^2 + x)^{3/2} - \frac{1}{2} \cdot \frac{1}{3} (x^2 + x)^{3/2} \] This simplifies to: \[ I = (x^2 + x)^{3/2} - \frac{1}{6} (x^2 + x)^{3/2} = \frac{5}{6} (x^2 + x)^{3/2} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int (x + 2) \sqrt{x^2 + x} \, dx = \frac{5}{6} (x^2 + x)^{3/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

Evaluate : int(3x-2)sqrt(x^2+x+1) dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

int(x+2)sqrt (x-3)dx

int sqrt(2-3x^(2))dx

(2) int x sqrt(3-2x-x^(2))dx

Evaluate: int(x+2)/sqrt (x^2-2x+3)dx

Evaluate : int(x+2)/(sqrt(x^(2)+4x+10))dx .

Evaluate: (i) int(4x+2)sqrt(x^2+x+1)\ dx (ii) int(4x+3)/(sqrt(2x^2+3x+1))\ dx