Home
Class 12
MATHS
Evaluate: int(x-5)\ sqrt(x^2+x)\ dx...

Evaluate: `int(x-5)\ sqrt(x^2+x)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int (x - 5) \sqrt{x^2 + x} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with: \[ I = \int (x - 5) \sqrt{x^2 + x} \, dx \] ### Step 2: Express \( x - 5 \) in terms of the derivative of \( x^2 + x \) We can express \( x - 5 \) as a linear combination of the derivative of \( x^2 + x \). The derivative is: \[ \frac{d}{dx}(x^2 + x) = 2x + 1 \] We can write: \[ x - 5 = A(2x + 1) + B \] where \( A \) and \( B \) are constants to be determined. ### Step 3: Determine Coefficients \( A \) and \( B \) Expanding the equation: \[ x - 5 = (2A)x + A + B \] Comparing coefficients, we have: 1. \( 2A = 1 \) (coefficient of \( x \)) 2. \( A + B = -5 \) (constant term) From the first equation, we find: \[ A = \frac{1}{2} \] Substituting \( A \) into the second equation: \[ \frac{1}{2} + B = -5 \implies B = -5 - \frac{1}{2} = -\frac{10}{2} - \frac{1}{2} = -\frac{11}{2} \] Thus, we have: \[ x - 5 = \frac{1}{2}(2x + 1) - \frac{11}{2} \] ### Step 4: Substitute Back into the Integral Now we can substitute back into the integral: \[ I = \int \left( \frac{1}{2}(2x + 1) - \frac{11}{2} \right) \sqrt{x^2 + x} \, dx \] This gives us: \[ I = \frac{1}{2} \int (2x + 1) \sqrt{x^2 + x} \, dx - \frac{11}{2} \int \sqrt{x^2 + x} \, dx \] ### Step 5: Define New Integrals Let: \[ I_1 = \int (2x + 1) \sqrt{x^2 + x} \, dx \] \[ I_2 = \int \sqrt{x^2 + x} \, dx \] Thus: \[ I = \frac{1}{2} I_1 - \frac{11}{2} I_2 \] ### Step 6: Solve \( I_1 \) For \( I_1 \), we can use the substitution \( u = x^2 + x \), then \( du = (2x + 1) \, dx \): \[ I_1 = \int \sqrt{u} \, du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} (x^2 + x)^{3/2} + C \] ### Step 7: Solve \( I_2 \) For \( I_2 \), we can complete the square: \[ x^2 + x = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} \] Then: \[ I_2 = \int \sqrt{\left(x + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2} \, dx \] Using the formula for the integral of a square root, we find: \[ I_2 = \frac{1}{2} \left( x + \frac{1}{2} \right) \sqrt{x^2 + x} - \frac{1}{4} \log \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| + C \] ### Step 8: Combine Results Substituting \( I_1 \) and \( I_2 \) back into our expression for \( I \): \[ I = \frac{1}{2} \left( \frac{2}{3} (x^2 + x)^{3/2} \right) - \frac{11}{2} \left( \frac{1}{2} \left( x + \frac{1}{2} \right) \sqrt{x^2 + x} - \frac{1}{4} \log \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| \right) \] ### Final Answer After simplifying, we arrive at the final result for the integral \( I \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2x-5)\ sqrt(x^2-4x+3)\ dx

Evaluate: int(2x-5)\ sqrt(x^2-4x+3)\ dx

Evaluate: int(x+2)\ sqrt(x^2+x+1)\ dx

Evaluate: int(x+1)\ sqrt(x^2-x+1)\ dx

Evaluate: int(x+1)\ sqrt(x^2+x+1)\ dx

Evaluate: int(x-2)\ sqrt(2x^2-6x+5)\ dx

Evaluate: int(x+1)\ sqrt(1-x-x^2)\ dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: int(3x+5)/sqrt(x^2-8x+7)\ dx

Evaluate: int(x^5)/(sqrt(1+x^3))\ dx