Home
Class 12
MATHS
Evaluate: int(4x+1)\ sqrt(x^2-x-2)\ dx...

Evaluate: `int(4x+1)\ sqrt(x^2-x-2)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int (4x + 1) \sqrt{x^2 - x - 2} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int (4x + 1) \sqrt{x^2 - x - 2} \, dx \] ### Step 2: Identify a Suitable Substitution We notice that \( \sqrt{x^2 - x - 2} \) can be related to the derivative of the expression inside the square root. We will express \( 4x + 1 \) in terms of the derivative of \( x^2 - x - 2 \). ### Step 3: Differentiate the Inside Function The derivative of \( x^2 - x - 2 \) is: \[ \frac{d}{dx}(x^2 - x - 2) = 2x - 1 \] We want to express \( 4x + 1 \) in terms of \( 2x - 1 \): \[ 4x + 1 = 2(2x - 1) + 3 \] ### Step 4: Substitute into the Integral Now we can rewrite the integral \( I \): \[ I = \int (2(2x - 1) + 3) \sqrt{x^2 - x - 2} \, dx \] This can be split into two separate integrals: \[ I = 2 \int (2x - 1) \sqrt{x^2 - x - 2} \, dx + 3 \int \sqrt{x^2 - x - 2} \, dx \] Let’s denote: \[ I_1 = \int (2x - 1) \sqrt{x^2 - x - 2} \, dx \] \[ I_2 = \int \sqrt{x^2 - x - 2} \, dx \] Thus, \[ I = 2I_1 + 3I_2 \] ### Step 5: Evaluate \( I_2 \) To evaluate \( I_2 \), we will complete the square for the expression under the square root: \[ x^2 - x - 2 = (x - \frac{1}{2})^2 - \frac{9}{4} \] Thus, \[ \sqrt{x^2 - x - 2} = \sqrt{(x - \frac{1}{2})^2 - (\frac{3}{2})^2} \] Now we can use the formula for the integral of the square root of a difference of squares: \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + C \] In our case, \( a = \frac{3}{2} \). ### Step 6: Substitute Back Now we can calculate \( I_2 \): \[ I_2 = \int \sqrt{(x - \frac{1}{2})^2 - (\frac{3}{2})^2} \, dx \] Using the formula: \[ I_2 = \frac{x}{2} \sqrt{(x - \frac{1}{2})^2 - (\frac{3}{2})^2} - \frac{(\frac{3}{2})^2}{2} \ln |x + \sqrt{(x - \frac{1}{2})^2 - (\frac{3}{2})^2}| \] ### Step 7: Evaluate \( I_1 \) For \( I_1 \), we can use integration by parts or a similar substitution method, but it will involve more steps. ### Final Step: Combine Results After calculating \( I_1 \) and \( I_2 \), substitute back into the expression for \( I \): \[ I = 2I_1 + 3I_2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7l|17 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x+1)\ sqrt(x^2-x+1)\ dx

Evaluate: int(4x+2)\ sqrt(x^2+x+1)\ dx

Evaluate: int(x+1)\ sqrt(x^2+x+1)\ dx

Evaluate: int(x+1)\ sqrt(1-x-x^2)\ dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: int(x+2)\ sqrt(x^2+x+1)\ dx

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate int (x-1)/sqrt(x^2-x) dx

Evaluate: (i) int(4x+2)sqrt(x^2+x+1)\ dx (ii) int(4x+3)/(sqrt(2x^2+3x+1))\ dx

Evaluate: int(2x+1)/(sqrt(x^2+4x+3))\ dx