Home
Class 12
MATHS
int(1)/(2+sin^(2) x)dx...

`int(1)/(2+sin^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{2 + \sin^2 x} \, dx \), we will follow a systematic approach. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{2 + \sin^2 x} \, dx \] ### Step 2: Divide by \( \cos^2 x \) To simplify the expression, we can divide both the numerator and the denominator by \( \cos^2 x \): \[ \int \frac{\frac{1}{\cos^2 x}}{\frac{2}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}} \, dx = \int \frac{\sec^2 x}{\frac{2}{\cos^2 x} + \tan^2 x} \, dx \] ### Step 3: Use the Identity \( \sec^2 x = 1 + \tan^2 x \) We know that \( \sec^2 x = 1 + \tan^2 x \). Thus, we can rewrite the integral as: \[ \int \frac{\sec^2 x}{2 \sec^2 x} \, dx = \int \frac{1}{2 + \tan^2 x} \, dx \] ### Step 4: Substitute \( \tan x = t \) Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} \). Hence, we can rewrite our integral: \[ \int \frac{1}{2 + t^2} \cdot \frac{dt}{\sec^2 x} \] Since \( \sec^2 x = 1 + t^2 \), we can substitute: \[ dx = \frac{dt}{1 + t^2} \] Thus, the integral becomes: \[ \int \frac{1}{2 + t^2} \cdot \frac{dt}{1 + t^2} \] ### Step 5: Simplify the Integral Now, we can simplify the integral: \[ \int \frac{dt}{(2 + t^2)(1 + t^2)} \] ### Step 6: Partial Fraction Decomposition We can use partial fraction decomposition: \[ \frac{1}{(2 + t^2)(1 + t^2)} = \frac{A}{2 + t^2} + \frac{B}{1 + t^2} \] Multiplying through by the denominator \( (2 + t^2)(1 + t^2) \) and solving for \( A \) and \( B \) gives us: \[ 1 = A(1 + t^2) + B(2 + t^2) \] ### Step 7: Solve for Coefficients Setting up equations for coefficients: 1. For \( t^2 \): \( A + B = 0 \) 2. For constant term: \( 2B = 1 \) → \( B = \frac{1}{2} \) From \( A + B = 0 \), we have \( A = -\frac{1}{2} \). ### Step 8: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( -\frac{1}{2(2 + t^2)} + \frac{1/2}{1 + t^2} \right) dt \] ### Step 9: Integrate Each Term Integrating each term separately: \[ -\frac{1}{2} \int \frac{1}{2 + t^2} dt + \frac{1}{2} \int \frac{1}{1 + t^2} dt \] Using the known integrals: \[ -\frac{1}{2} \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{t}{\sqrt{2}}\right) + \frac{1}{2} \tan^{-1}(t) + C \] ### Step 10: Substitute Back for \( t \) Substituting back \( t = \tan x \): \[ -\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{\tan x}{\sqrt{2}}\right) + \frac{1}{2} \tan^{-1}(\tan x) + C \] Since \( \tan^{-1}(\tan x) = x \): \[ -\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{\tan x}{\sqrt{2}}\right) + \frac{x}{2} + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1}{2 + \sin^2 x} \, dx = -\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{\tan x}{\sqrt{2}}\right) + \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(3-2sin^(2)x)dx

int(1)/(3-2sin^(2)x)dx

int (1)/(sin^(2)2x )dx

int(1)/(1+3 sin ^(2)x)dx is equal to

Evaluate: I=int(1)/(1-2sin x)dx

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

Evaluate : int 1/x^2 sin^2 (1/x)dx

Evaluate int(1)/(sin x- sin 2x)dx .

Evaluate: int1/(cos2x+3sin^2x)dx

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx