Home
Class 12
MATHS
int(1)/(sin^(2)x-4 cos^(2)x)dx...

`int(1)/(sin^(2)x-4 cos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sin^2 x - 4 \cos^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{1}{\sin^2 x - 4 \cos^2 x} \, dx \] ### Step 2: Divide numerator and denominator by \(\cos^2 x\) To simplify the expression, we divide both the numerator and the denominator by \(\cos^2 x\): \[ I = \int \frac{1/\cos^2 x}{\frac{\sin^2 x}{\cos^2 x} - 4} \, dx = \int \frac{\sec^2 x}{\tan^2 x - 4} \, dx \] ### Step 3: Substitute \( \tan x = t \) Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \), which means \( dx = \frac{dt}{\sec^2 x} \). Substituting this into the integral gives: \[ I = \int \frac{1}{t^2 - 4} \, dt \] ### Step 4: Recognize the integral form The expression \( t^2 - 4 \) can be factored as \( (t - 2)(t + 2) \). We can use the formula for the integral: \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \] where \( a = 2 \). ### Step 5: Apply the formula Applying the formula: \[ I = \frac{1}{2 \cdot 2} \ln \left| \frac{t - 2}{t + 2} \right| + C = \frac{1}{4} \ln \left| \frac{t - 2}{t + 2} \right| + C \] ### Step 6: Substitute back \( t = \tan x \) Now, substituting back \( t = \tan x \): \[ I = \frac{1}{4} \ln \left| \frac{\tan x - 2}{\tan x + 2} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{1}{4} \ln \left| \frac{\tan x - 2}{\tan x + 2} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(3sin^(2) x+4 cos^(2) x)dx

3. int(dx)/(sin^(2)x+cos^(2)x)

int(1)/(cos^(2) x-3 sin^(2) x)dx

Evaluate int(1)/(4sin^(2) x + 9 cos^(2) x) dx

int(dx)/( sin^(2)x cos^(2)x) is equal to

Evaluate: int1/(sin^2x cos^2x)\ dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int(sin2x)/(a^(2)-cos^(2)x)dx

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx